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Abstract

We introduce a way to compare actions in decision problems. An action is

safer than another if the set of beliefs at which the decision-maker prefers the

safer action increases in size (in the set-inclusion sense) as the decision-maker

becomes more risk averse. We provide a full characterization of this relation

and show that it is equivalent to a robust concept of single-crossing. We dis-

cuss applications to investment hedging, security design, and game theory.
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1 Introduction

Risk is a central component of decision making under uncertainty. By now it is

understood that in many situations, decision-makers (DMs) dislike risk, and such
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aversion affects a DM’s behavior when she makes some choice. Moreover, there is

also a standard notion of what it means for one DM to be more risk averse than

another: in the expected-utility realm, the DM that is more risk averse has a utility

that is a strictly monotone concave transformation of the other’s.

It is less well-understood, however, what characteristics lead some actions to

be more attractive to DMs than others. Casual reflection suggests there is at least a

vague notion of an action (a choice the DM can take) being less risky than another.

For example, if the decision problem is a choice of bet at a roulette table, betting

on red is safer than betting on a specific odd number; and leaving the table, money

in hand, is safer than either.

Our goal in this paper is to understand and define precisely what it means for

one action in a decision problem to be safer than another. Our criterion is a broad

one: we fix an arbitrary decision problem–a triple consisting of a set of states, a

set of actions, and a state-and-action-dependent utility function–and formulate a

binary relation between actions available to the DM. One action a is Safer than

another action b, a ⪰S b, if the set of beliefs at which action a is preferred to b

grows–in the set inclusion sense–as the DM becomes more risk averse. That is,

safer actions become more attractive as the DM becomes more risk averse.

What makes one action safer than another? It is useful to first think about a

decision problem with a risk-free action, which yields the same payoff to the DM

no matter the state. In the roulette example, this is leaving the table, money in

hand. As we note above, we would expect such an action to be safer than any other

action: increased risk aversion should make the risk-free action relatively more

attractive than one that exposes the agent to risk.1 In belief space, the (expected)

payoff of a risk-free action has a completely flat slope, so a natural guess is that

safer actions are those with flatter slopes.

1That a less risk-averse agent accepts any gamble that a more-risk averse agent does is precisely
Yaari (1969)’s behavioral definition of risk aversion.
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Our main result, Theorem 4.1, establishes necessary and sufficient conditions

on the DM’s payoffs for action a to be safer than action b. Surprisingly, even with

just two states, having a flatter slope is too weak–our “safer than” relation implies

a flatter slope but the converse is not true. Specifically, a is safer than b if and

only if the payoffs to a lie within the convex hull of the payoffs to b. Note that this

condition relies on payoffs alone; it is independent of the DM’s belief.

We prove that when there are more than two states, the conditions equivalent to

safety are simply the aggregation of a particular collection of two-state conditions.

Namely, it is sufficient to examine only the edges of the simplex of beliefs that

contain points of indifference between the two actions. We treat each such edge

like a two-state environment and so the two-state safer-than conditions (for each

relevant edge) are all that we need.

Connection to “Single-Crossing:” Naturally, for any fixed distribution over states

x, any choice of action a yields a real-valued random variable (in utils) with distri-

bution Fxa . Working with these objects, there is a classical notion of the robustness

with respect to increased risk aversion of preferring one action to another. As im-

plied by results in Karlin and Novikoff (1963), if Fxa crosses Fxb once from below,

then EFxa [u] ≥ EFxb
[u] implies EFxa [φ ◦u] ≥ EFxb

[φ ◦u] for any strictly increasing

concave φ–any increase in risk-aversion.

Crucially, this classical notion is distribution-specific: single-crossing is a prop-

erty of distributions over payoffs. In contrast, our concept is a statement about the

payoffs themselves. Nevertheless, we show that these two properties are intimately

connected. In Theorem 4.7, we establish that a is safer than b if and only if Fxa

single-crosses Fxb from below for any distribution over states x.

Applications: We discuss the usefulness of the safer-than relation in several ap-

plications. First, we relate our relation to hedging in an investment setting. Given

an investor’s current holdings, we formulate a binary relation between assets: one
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asset “hedges” better than another if the set of beliefs justifying it expands as the

investor becomes more risk averse. Second, we use our relation to rank securities

according to their sensitivity to an investor’s risk aversion. Third, we briefly dis-

cuss “safe” strategy profiles in coordination games, which is similar in spirit, but

not equivalent, to the risk-dominance concept of Harsanyi and Selten (1988).

Proof Approach: In deducing the safer-than relation, we begin with the two-state

environment: there, beliefs are scalars and regions of optimality for beliefs are

intervals, so the proof requires only characterizing in which direction the point

of indifference between the two actions moves as a result of the DM’s increased

risk aversion. To do this, we use an elementary result from convex analysis–the

three-chord lemma. Unanticipatedly, it proves straightforward to extend the char-

acterization of the relation to a general state space. We discover that the general

case can be understood as a collection of two-state environments, and so the nec-

essary and sufficient condition of the theorem is just that the two-state conditions

hold for every pair in the collection.

The intuition behind this–that all we need to do is aggregate the two-state

conditions–is as follows. We require the set of optimal beliefs for an action to

grow, viz., the set of beliefs at which the specified action is initially optimal must

be a subset of the new set of beliefs after the DM becomes more risk averse. These

optimality sets are simply the intersections of half-spaces and the probability sim-

plex. Moreover, the extreme points of these sets are vertices of the simplex and

certain non-vertex points on the edges. These points on the edges are precisely the

indifference points between the actions for pairs of states in which each of the two

actions is optimal in only one state. We need only make sure these indifference

points move in the “right direction” along the edges as the DM becomes more risk

averse.
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1.1 Related Work

Yaari (1969) introduces an important comparative notion of risk aversion: “Mr.

A is more risk averse than Mr. B if...every gamble which is acceptable to A is

acceptable to B." In other words, if A is more risk averse than B, the set of risky

actions that he prefers to a risk-free action is a subset of the risky actions that B

prefers to the risk-free one.2 Using our concept of safety, an action that has a state-

independent (deterministic) payoff is safer than all other actions. Moreover, we

argue that there is a natural way to broaden this notion of insensitivity to risk-

aversion beyond a total absence of risk. That is, Yaari’s behavioral characterization

of “less risk averse” can be redefined to mean increased willingness to pick an

action over a safer one, instead of just the safest one.

Hammond III (1974), Lambert and Hey (1979), Karlin and Novikoff (1963),

Jewitt (1987) all contain results concerning when an action that is preferred to

another given some utility function must still be preferred following any increase

in the agent’s risk aversion. The key difference is that the condition in these papers

is on the distributions over wealth obtained by the agent as a result of her choice

of actions. In this context, one contribution of our paper is to formulate a way

of comparing actions’ comparative robustness that is distribution-free. In §4.2, we

connect our concept of safety to the single-crossing property identified by these

works and reveal that safety is equivalent to a robust notion of single-crossing of

the induced distributions over utils for all subjective beliefs.

Whitmeyer (2023) is also related to our work. That paper studies transfor-

mations of decision problems that render information more valuable to a DM.

Here, we study a particular variety of transformation–an increase in the DM’s risk

aversion–and focus on its effect on the optimality of various actions.

This paper also harkens to the comparative statics literature; see, e.g., Milgrom

2Similarly, Ghirardato and Marinacci (2002) defines when preferences are “more ambiguity
averse" than others.
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and Shannon (1994), Edlin and Shannon (1998), and Athey (2002). We also vary

a parameter, the DM’s risk aversion, and ask how this affects the DM’s behavior.

However, we focus on comparisons between actions and make our relation quite

demanding: the enlargement of the set of beliefs at which an action is preferred to

another must arise for any monotone concave transformation of the DM’s utility.

Finally, our work is also related to the striking result of Battigalli, Cerreia-

Vioglio, Maccheroni, and Marinacci (2016), who prove that increased risk aversion

on the part of the DM enlarges the set of justifiable actions, the actions that are

at least weakly optimal at some belief. That is, a justifiable action remains justifi-

able if the DM becomes more risk averse; and increased risk aversion may render

actions optimal that had previously been strictly dominated.3 We, instead, study

the properties of decision problems and actions therein for which increased risk

aversion enlarges the set of beliefs at which some actions are optimal.

2 Model

There is an unknown state of the world θ, which is an element of some topological

space of states Θ, endowed with the Borel σ -algebra. We specify further that Θ is

compact and metrizable. We denote the set of all Borel probability measures on

Θ by ∆ ≡ ∆ (Θ). Our protagonist is a decision-maker (DM) with a compact set of

actions A ⊆R (with |A| ≥ 2), and a state dependent utility function u : A×Θ→R+.4

We assume u is continuous in the action, a, the DM has a subjective belief

x ∈ ∆, and she is a subjective expected-utility (EU) maximizer. We also specify that

no action in A is weakly dominated: for all a ∈ A, there exists some x ∈ ∆ at which

a is uniquely optimal. The DM becomes more risk averse if her utility function is

3By understanding a decision problem as a game with just a single player, this result is also
shown by Weinstein (2016).

4We posit a “reduced-form” utility mapping actions and states to utils. We could just as easily
specify a set of consequences and (Savage) acts, but prefer the current form.

6



instead û where û = φ ◦u for some strictly monotone concave φ.

For any two actions a,b ∈ A (a , b), we define the set Pa,b (a) to be the subset of

the probability simplex on which action a is weakly preferred to b; formally,

Pa,b (a)B {x ∈ ∆ : Exu (a,θ) ≥ Exu (b,θ)} .

By assumption this set is non-empty and–when ∆ is finite dimensional–of full di-

mension in ∆. When the utility function is û, we define the set P̂a,b (a) in the anal-

ogous manner.

Definition 2.1. Action a is Safer than action b if for any monotone concave φ,

Pa,b (a) ⊆ P̂a,b (a); i.e., the set of beliefs at which action a is preferred to b increases

in size as the DM becomes more risk averse.

Equivalently, action a is safer than action b if

Exu (a,θ) ≥ Exu (b,θ) ⇒ Exφ ◦u (a,θ) ≥ Exφ ◦u (b,θ)

for any strictly monotone concave φ. Let a ⪰S b denote the binary relation Action

a is safer than Action b. The strict relation, a ≻S b denotes a ⪰S b but b ⪰̸S a.

3 Two States

When there are two states, 0 and 1, for two actions a,b ∈ A, let αθ ≡ u (a,θ) and

βθ ≡ u (b,θ). As no action is weakly dominated, and as we could just relabel the

actions, we specify without loss of generality that α0 > β0 and β1 > α1 so that if the

DM knows that the state is 0, she prefers a and if she knows that the state is 1, she

prefers b.
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3.1 Safer Actions

Consider the DM’s choice between actions a and b. Let x ∈ [0,1] be the probability

that the state is 1, so that she prefers action a if and only if

(1− x)α0 + xα1 ≥ (1− x)β0 + xβ1 ⇔ x ≤
α0 − β0

α0 − β0 + β1 − β0
≡ x̄.

Analogously, under the transformed utility, the indifference belief is

x̂ ≡
φ (α0)−φ (β0)

φ (α0)−φ (β0) +φ (β1)−φ (α1)
.

By definition, action a is safer than action b if it is chosen for more beliefs after the

change in utility; that is, if x̄ ≤ x̂. This translates to

φ(β1)−φ(α1)
β1 −α1

≤
φ(α0)−φ(β0)

α0 − β0
. (1)

Consider the meaning of this condition. The right-hand side is the secant line

to the concave φ at points α0 and β0; that is, the average slope of φ between β0 and

α0. In other words, it is the marginal benefit from “correctly" choosing a in state

0 (because a is better if the state is 0) under the transformation φ. Therefore, if

action a is safer than action b, its marginal benefit in its “correct" state is higher

under the transformation, and it will be chosen more.

Using Inequality (1), we can characterize the “safer than” binary relation, ⪰S ,

exactly when there are two states:

Proposition 3.1. For actions a,b ∈ A, a ⪰S b if and only if β1 ≥ α0 & α1 ≥ β0.

Proof. (⇒) By the Three-chord lemma (Theorem 1.16 in Phelps (2009))

φ (α0)−φ (β0)
α0 − β0

≥
φ (β1)−φ (β0)

β1 − β0
. (2)
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Likewise, β1 > α1 ≥ β0 plus the Three-chord lemma imply

φ (β1)−φ (β0)
β1 − β0

≥
φ (β1)−φ (α1)

β1 −α1
. (3)

Combining Inequalities 2 and 3 yields Inequality 1.

(⇐) See Appendix A.1. ■

Recalling that α0 > β0 and β1 > α1, we can rephrase this proposition as saying

that a is safer than b if and only if the payoffs of a lie in the convex hull of the

payoffs of b. In other words, a ⪰S b if and only if choosing a and being “wrong"

(because the state is actually 1) is not as bad as choosing b and being “wrong,"

while choosing a and being “right" is not as good as choosing b and being “right."

One might suppose that actions that yield comparatively consistent payoffs are

relatively safe actions. In other words, if we let the slope of the payoff to action a

be γa B α1 −α0 and the payoff to action b be γb B β1 − β0, then a reasonable guess

is that an action with a shallower slope, or smaller (absolute value of) γi , is safer.

This is not always the case, however.

Corollary 3.2. If a ⪰S b, then
∣∣∣γa∣∣∣ ≤ ∣∣∣γb∣∣∣. The converse is not generally true.

Proof. See Appendix A.2. ■

To gain intuition for why a shallower slope of the payoff function is not suffi-

cient for a safer action, consider the following example. Let α0 = 5, β1 = 4, α1 = 3,

and β0 = 1. Then, |γa| = 2 < 3 = |γb| so that action a has a shallower slope, but

β1 < α0 so that a is not safer than b.

Now define W (x) ≡ maxa′∈{a,b}Exu (a′,θ). It is only if the slope of W changes

sign that we lose the equivalence between safety and “flatter than.”5

Corollary 3.3. If W (x) is monotone, then
∣∣∣γa∣∣∣ ≤ ∣∣∣γb∣∣∣⇒ a ⪰S b.

5In Appendix B we present an example with a quadratic loss utility function demonstrating
Proposition 3.1 and Corollary 3.3.
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Proof. WLOG, let W be increasing. Then, β1 > α1 ≥ α0 and α1 ≥ α0 > β0. ■

For any action a′, the DM’s expected payoff is (1−x)u(a′,0)+xu(a′,1) with slope

u(a′,1) − u(a′,0). W being monotone means that the DM prefers one state to the

other no matter the action so that the closer she gets to believing that the preferred

state is the true state, the better off she is.6

4 More Than Two States

Now let Θ be an arbitrary compact and metrizable space (endowed with the Borel

σ -algebra). We restrict attention to generic decision problems, in which the DM

strictly prefers one of the two actions in each state.7 For two actions a,b ∈ A we

maintain the notation αθ B u (a,θ) and βθ B u (b,θ). We maintain the assumption

that no action is weakly dominated, and define A to be the set of states in which

a is uniquely optimal and B = Θ \A to be the set of states in which b is uniquely

optimal.

4.1 Safer Actions

Now, we state the main result of the paper.

Theorem 4.1. Action a is safer than action b if and only if for each θ ∈A and θ′ ∈ B,

βθ′ ≥ αθ and αθ′ ≥ βθ.

Proof. See Appendix A.3. ■

The key to this result is that we need only compare action by action and state

by state along particular edges of ∆. Specifically, consider states θ ∈ A and θ′ ∈

6We give conditions for the action set to be totally ordered with respect to safety for the general
case in Proposition 4.8 below.

7This assumption is innocuous, allowing us to save on notation and work while leaving the
results unchanged.
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B. Comparing payoffs for only these two states, our result from Proposition 3.1

applies directly so that, if the probability of all other states is 0, a is safer than b if

and only if αθ ≤ βθ′ and βθ ≤ αθ′ , as before. Doing this for every pair of states in

which θ ∈A and θ′ ∈ B yields the result.

Figure 1 illustrates two safety comparisons when there are three states. In both

panels, the blue region is the set of beliefs at which action a is preferred to action

b when the DM’s utility is u, and the red region is the set of beliefs at which a is

preferred to b when the DM’s utility is û = φ◦u, where φ (·) = (·)
1
t . In the left panel,

a ⪰S b, so that when the DM becomes more risk averse, the set of beliefs at which a

is preferred expands. In the right panel, however, α2 < β0, violating Theorem 4.1’s

conditions.

Some decision problems contain a risk-free action, i.e., one that guarantees a

deterministic payoff to the DM. Formally, action a is risk-free if u (a,θ) = u (a,θ′)

for all θ,θ′ ∈Θ. Keep in mind that our specification that no action is weakly dom-

inated implies that there is at most one risk-free action. Risk-free actions interact

with our relation in a natural way.

Corollary 4.2. If there exists a risk-free action, a, then a ≻S b for all b , a.

4.2 Connection to “Single-Crossing”

Decision-making under uncertainty has long been of interest to economists. A

classical question concerns which lotteries are made comparatively more attractive

as agents become more risk averse. This is similar in spirit to our safety notion,

though as we will shortly explain, there is an important difference: the classical

relation is between lotteries, which are random variables, whereas ours is between

vectors of (state-dependent) payoffs.
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(a) (Interactive Version) (b) (Interactive Version)

Figure 1: In both panels, there are three possible states: 0, 1, and 2. The x axis
represents the probability that the state is 1, while the y axis represents the prob-
ability that the state is 2. The blue areas represent beliefs at which a is preferred
to b under the original utility specification, while the red areas indicate beliefs at
which a is preferred to b after the concave transformation. In both panels, 0 ∈A,
1,2 ∈ B, α0 ≤ β2, α0 ≤ β1, and β0 ≤ α1. In the left panel, β0 ≤ α2 (a ⪰S b), while in
the right panel, α2 < β0 (a ⪰̸S b and b ⪰̸S a).

Nevertheless, we can connect these two concepts. Given belief x ∈ ∆, let

Fxa (v)B Px (u (a,θ) ≤ v) , and Fxb (v)B Px (u (b,θ) ≤ v)

denote the cdfs of the DM’s random utility from choosing actions a or b, respec-

tively.8 Given these two distributions, we introduce a familiar definition.

Definition 4.3. Fxa Single-crosses Fxb from below, Fxa ⪰sc Fxb , if there exists a v̄ ∈ R

such that for all v ∈R, v ≤ v̄ implies Fxb (v) ≥ Fxa (v) and v ≥ v̄ implies Fxa (v) ≥ Fxb (v).

Then, Hammond III (1974), Lambert and Hey (1979), Karlin and Novikoff

(1963), and Jewitt (1987) all contain the following result that highlights the im-

portance of single-crossing in understanding risk aversion.9 From Jewitt (1987),

8Note that the belief x pins down the utility distribution and, therefore, Fxa and Fxb .
9The literature defines single-crossing in terms of consequences, then posits a strictly increasing

utility function. We define the concept in terms of utils, with no loss of generality.
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Theorem 4.4. Fxa ⪰sc Fxb implies∫
vdFxa (v) ≥

∫
vdFxb (v) ⇒

∫
φ (v)dFxa (v) ≥

∫
φ (v)dFxb (v)

whenever φ is increasing and concave.

To reiterate, single-crossing is a distribution-specific property. It is a statement

about cdfs–in the economic context, a characteristic of lotteries. Accordingly, the

classical results are comparing specific distributions. In contrast, our concept of

safety is prior-free–it is a statement merely about (state-dependent) payoffs. Nev-

ertheless, we can still connect safety to single-crossing. Then,

Lemma 4.5. If Fxa ⪰sc Fxb for all x ∈ ∆, then a ⪰S b.

Proof. Suppose for the sake of contraposition that a ⪰̸S b. Consequently, recalling

that neither a nor b is weakly dominated, there exists an x ∈ ∆ and a strictly mono-

tone concave transformation φ such that Exu (a,θ) ≥ Exu (b,θ), but Exφ ◦u (a,θ) <

Exφ ◦u (b,θ). Thus, Fxa ⪰̸sc F
x
b . ■

That is, if the entire family of functions
{
Fxa −Fxb

}
x∈∆

crosses the horizontal axis

at most once (and from below), action a is safer than b. Furthermore, the converse

to this lemma is also true.

Lemma 4.6. If a ⪰S b, then Fxa ⪰sc Fxb for all x ∈ ∆.

Proof. See Appendix A.4. ■

We see that safety implies a sense of robust single-crossing: every element of

the set
{
Fxa −Fxb

}
x∈∆

crosses the horizontal axis at most once from below. Why does

this lemma hold? Notably, the conditions equivalent to safety are quite demand-

ing: in every pair of states in which different actions are optimal, the payoffs to

the safer action lie within the convex hull of the payoffs to the other. This implies

that the cdf over utils for the unsafe action must be supported on values below and
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above the support of the safe action’s cdf, but nothing in between. Hence, single-

crossing. Combining Lemmas 4.5 and 4.6 yields

Theorem 4.7. a ⪰S b if and only if Fxa ⪰sc Fxb for all x ∈ ∆.

4.3 Ordering the Action Set

The “safer than” relation is not, in general, transitive when there are three or more

states. This lack of general transitivity indicates that if the set of actions is to be

partially or totally ordered by safety, additional conditions are needed.10

Proposition 4.8. Let the set of states, Θ, be totally ordered. If

(i) For all actions a ∈ A, the DM’s utility u (a,θ) is monotone in θ; and

(ii) For any two actions a,b ∈ A, the states are ordered by optimality, i.e., either

supθA ≤ infθ′ B or infθA ≥ supθ′ B,

then the set of actions, A, is totally ordered by ⪰S .

In short, we are putting enough structure on payoffs to allow for a thorough

comparison of actions. Recall Corollary 3.3 which says that if payoffs are mono-

tone, then for any two actions a and b, the slope of the payoff of a being smaller

is equivalent to a being safer than b. The same rationale applies here, and we are

able to rank all actions with respect to slope (more-or-less) and therefore safety.

4.4 Smooth Ambiguity Aversion

Our main result extends in a natural way to the smooth ambiguity model of Klibanoff,

Marinacci, and Mukerji (2005). Suppose our DM prefers action a to action b if and

only if

Eνψ

(∫
u(a,θ)dπ (θ)

)
≥ Eνψ

(∫
u(b,θ)dπ (θ)

)
,

10In Appendix B, we present an example with a quadratic loss utility function demonstrating
Theorem 4.1 and Proposition 4.8.
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where ψ is a monotone concave function and ν ∈ ∆Π is a distribution over feasible

probability measures π ∈Π ⊆ ∆Θ. We specify that Π is compact.

Following Klibanoff et al. (2005), our DM becomes more ambiguity averse if the

internal von Neumann–Morgenstern utility u stays unchanged and ψ transforms

to ψ̂ ≡ φ ◦ψ, where φ is some monotone concave function.

Understanding ψ
(∫
u(a,θ)dπ (θ)

)
as a concave functional ψ : A×∆Θ→ R+, we

define A ⊂ ∆Θ to be the set of priors at which a is uniquely optimal and B = ∆Θ\A

to be the set in which b is uniquely optimal. We further define

απ B ψ

(∫
u(a,θ)dπ (θ)

)
and βπ B ψ

(∫
u(b,θ)dπ (θ)

)
;

then, applying Theorem 4.1, obtain

Proposition 4.9. Action a is safer than action b if and only if for each π ∈ A and

π′ ∈ B, βπ′ ≥ απ and απ′ ≥ βπ.

5 Applications

Our relation is useful in a variety of settings. In §5.1, we formulate a notion of

robust hedging, and §5.2 uses our safer-than relation to compare securities. §5.3

reveals how our relation can be used to formulate a notion of safe strategy profiles

in games.

5.1 Hedging

Consider the classic question of constructing an asset portfolio to hedge against

risk. To be concrete, suppose our DM’s wealth, or other holdings, y, fluctuates

according to market conditions (the state θ) and is distributed according to Hθ.

She decides whether to add asset a or asset b to her portfolio to hedge against the

unavoidable variation of y. Asset a pays wθ in state θ and asset b pays vθ.

15



We say that Asset a hedges risk better than asset b if for any strictly monotone

concave utility function u, the set of beliefs at which a is preferred by the DM to b

is a superset of the set of beliefs at which a is preferred to b by a risk-neutral DM.

We can put this problem in the language of the earlier framework, setting

αθ =
∫

(wθ + y)dHθ (y) = wθ +µθ,

where µθ B EHθ [Y ], and

βθ = vθ +µθ.

Appealing to genericity we stipulate wθ > vθ for all θ ∈ A and vθ′ > wθ′ for all

θ′ ∈ B ≡Θ \A. Thus,

Proposition 5.1. If wθ′ ≥ vθ, vθ′ ≥ wθ, and Hθ′ first-order stochastically dominates

Hθ for all θ ∈A and θ′ ∈ B, then asset a hedges risk better than asset b.

The sufficient condition above translates Theorem 4.1 into the hedging setting.

We must still have βθ′ ≥ αθ and αθ′ ≥ βθ, but we also need to discipline the con-

ditional distributions of the aggregate risk. The intuition for the stochastic dom-

inance assumptions is as follows. Asset a, by construction, is optimal in all states

θ ∈ A. If the state is some θ′ ∈ B, the DM has chosen incorrectly, but because

Hθ′ dominatesHθ, the downside risk from choosing incorrectly is mitigated. In this

sense, asset a yields more insurance to the DM, and, therefore, hedges risk better.

The classical literature–e.g., Kihlstrom, Romer, and Williams (1981), Ross (1981),

Nachman (1982), Jewitt (1987), and Eeckhoudt, Gollier, and Schlesinger (1996)–

studies a similar question, asking when

EFxa ,Hu (Ya +V ) ≥ EFxb ,H
u (Yb +V ) ⇒ EFxa ,Hφ ◦u (Ya +V ) ≥ EFxb ,H

φ ◦u (Yb +V ) ,

for any monotone concave φ, where random variable V (with cdf H) is the DM’s

random wealth and Ya and Yb (with respective cdfs Fxa and Fxb ) are the random
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payoffs from assets a and b, respectively. Our Proposition 5.1 is different from

these works in two essential ways: first, the aforementioned papers are concerned

with the properties of random variables that lead to one asset being more sensitive

to an investor’s risk preferences. In contrast, ours is distribution-free comparison

between assets. Second, the papers in the literature stipulate that Yi and V are

independent. We assume no such independence here.

5.2 Safe Securities

Consider a firm that is selling state-contingent securities to investors in order to

raise capital. In state θ ∈ [0,1], the firm receives cash flow θ and pays the promised

security S(θ) to the investor, with the distribution of states denoted x ∈ ∆([0,1]).

These securities can be structured in a variety of ways, and many papers in the

literature examine which type of security is best for either the firm to sell or the

investor to offer, given the specific context. We use the tools that we have devel-

oped to compare the robustness to risk aversion of securities.

While there is an abundance of ways to structure the state-contingent payoff

S(θ), here are three of the most common:

1. Equity: the investor receives a constant portion, η ∈ (0,1), of the cash flow, or

S(θ) = ηθ,

2. Debt: the investor is owed a debt d ∈ (0,1) and collects as much of it as

possible, or S(θ) = min{θ,d}; and

3. Call Option: the investor gets a call option with a strike price of ρ ∈ (0,1), or

S(θ) = max{θ − ρ,0}.

Following the literature–see, e.g., Nachman and Noe (1994) and DeMarzo, Kre-

mer, and Skrzypacz (2005)– we assume that any security S(θ) satisfies the follow-

ing properties:

(i) Monotonicity I: S (the investor’s share of cash flow) is nondecreasing in θ;

(ii) Monotonicity II: θ − S (the firm’s share of cash flow) is nondecreasing in θ;
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(iii) Limited liability: 0 ≤ S (θ) ≤ θ.

We scrutinize securities from the perspective of an investor with a strictly in-

creasing utility function over wealth: u : W → R. Consider two securities, Sa and

Sb, and assume that neither is weakly dominated: there exist realizations of the

random cash flow under which each is strictly preferred (ex post) to the other.

Define

A B {θ ∈ [0,1] : u (Sa (θ)) > u (Sb (θ))} , BB
{
θ′ ∈ [0,1] : u (Sb (θ′)) > u (Sa (θ′))

}
.

By Theorem 4.1, security Sa is safer than Sb if and only if for all θ ∈ A and θ′ ∈

B, u (Sb (θ′)) ≥ u (Sa (θ)) and u (Sa (θ′)) ≥ u (Sb (θ)). Noting that our definition of

single-crossing from §4.2 is now in terms of cash flows rather than utils, we have

Theorem 5.2. Sa ⪰S Sb if and only if Sb ⪰sc Sa.

Proof. (⇒) Let Sb ⪰sc Sa. Then for all θ ∈ A and θ′ ∈ B, u (Sb (θ′)) > u (Sa (θ′)) ≥

u (Sa (θ)) and u (Sa (θ′)) ≥ u (Sa (θ)) > u (Sb (θ)), where we used Sa’s monotonicity.

(⇐) Suppose for the sake of contraposition Sb ⪰̸sc Sa. This means there exist θ1 < θ2

such that Sa (θ1) < Sb (θ1) and Sb (θ2) < Sa (θ2). By the monotonicity of Sb, Sb (θ1) ≤

Sb (θ2) < Sa (θ2), so Sa ⪰̸S Sb. ■

Debt yields the highest possible payoff for low states (S(θ) = θ), and as such,

debt must single-cross any other security from above. Thus,

Corollary 5.3. Debt is safer than any other security.

Intuitively, a security is safer if it gives a constant payoff, regardless of the state.

This is constrained, however, by limited liability (S(θ) ≤ θ). A call option yields

the lowest possible payoff for low states (S(θ) = 0), and has the largest possible

slope when it is non-constant. Consequently, by the intermediate value theorem,

a call option must single-cross from below any other security. So,
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Corollary 5.4. All securities are safer than a call option.

As observed by, for instance, DeMarzo et al. (2005), Dang, Gorton, and Holm-

ström (2013), and Inostroza and Tsoy (2022), a security that crosses the other from

below is more information sensitive: the value of information about the state is

higher. We show that this precise means of comparison (signal-crossing from be-

low), is the way to rank securities in terms of their robustness to risk aversion.

5.3 A Different Kind of Risk Dominance in Games

As games are just decision problems with endogenous payoffs, our results may

be applied to strategic settings. Weinstein (2016) reveals that increased risk aver-

sion expands the set of rationalizable strategies. Here, we show that although all

strategies remain rationalizable, some become more rationalizable than others in

the sense that they can be rationalized by more beliefs than before.

Consider the following two-player, two-action coordination game. If both play-

ers choose action a, they each get a payoff of α1; and if both players choose action

b, they each get a payoff of β2. Their mismatch payoffs are u1 (a,b) = u2 (b,a) = α2

and u1 (b,a) = u2 (a,b) = β1. We assume that α1 > β1 and β2 > α2.

We say that a strategy pair (a1, a2) is Safe if the set of beliefs (σ1,σ2) ∈ Σ1 ×Σ2

with respect to which a1 and a2 are best responses increases in size (in the set-

inclusion sense) as players become more risk-averse. Then, from Proposition 3.1,

Proposition 5.5. α2 ≥ β1 and β2 ≥ α1 if and only if (a,a) is safe.

The necessary and sufficient condition in this proposition differs from the risk-

dominance condition of Harsanyi and Selten (1988); which reduces to (a,a) risk

dominates (b,b) if β2 − α2 ≤ α1 − β1. Our concept of safety, therefore, requires a

weaker condition relative to risk dominance.
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A Omitted Proofs

A.1 Proposition 3.1 Proof

Proof. (⇐) Now suppose for the sake of contraposition that β0 > α1 (and recall

α0 > β0). There are two possibilities: either α0 ≤ β1, or α0 > β1.

Suppose first α0 ≤ β1, so

β1 ≥ α0 > β0 > α1.

Let

φ (y) = min {y,ky + c} ,

where

c =
β0 (β0β1 −α0α1)

β0 (α1 − β0) +α0 (β0 − 2α1) + β0β1
and k =

(α0 − β0) (β0 −α1)
β0 (α1 − β0) +α0 (β0 − 2α1) + β0β1

.

It is straightforward to check that k ∈ (0,1) and kβ0 +c = β0, so φ is weakly concave,

as required.

Moreover,

φ (β1)−φ (α1)
β1 −α1

>
φ (α0)−φ (β0)

α0 − β0
⇔

kβ1 + c −α1

β1 −α1
−
kα0 + c − β0

α0 − β0
> 0,

if and only if

(1− k) (β0β1 −α0α1)− c (β1 −α0 + β0 −α1) > 0,

which also holds.

Finally, suppose α0 > β1, in which case we have α0 > β1 > α1 and α0 > β0 > α1.
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By the three-chord lemma, we have

φ (β1)−φ (α1)
β1 −α1

≥
φ (α0)−φ (α1)

α0 −α1
,

so it suffices to construct a concave monotone φ for which

Ψ B
φ (α0)−φ (α1)

α0 −α1
−
φ (α0)−φ (β0)

α0 − β0
> 0.

To that end, let

φ (y) = min
{
y,
y + β0

2

}
.

Plugging this in, we have

Ψ =
α0+β0

2 −α1

α0 −α1
−
α0+β0

2 − β0

α0 − β0
=

β0 −α1

2(α0 −α1)
> 0,

as desired. ■

A.2 Corollary 3.2 Proof

Proof. (⇍) The following example suffices: α0 = 5, β1 = 4, α1 = 3, and β0 = 1. Then,

α0 > β1 so a ⪰̸S b but

|α1 −α0| = 2 ≤ 3 =
∣∣∣β1 − β0

∣∣∣ .
(⇒) If a ⪰S b, Proposition 3.1 implies β1 ≥ α0 and β1 > α1 ≥ β0. Consequently,

∣∣∣β1 − β0

∣∣∣ = β1 − β0 > α1 −α0,

so if α0 ≤ α1 we are done. Now let α0 > α1 and suppose for the sake of contradic-

tion

α0 −α1 > β1 − β0,
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which holds if and only if

α0 + β0 > α1 + β1,

which is false. ■

A.3 Theorem 4.1 Proof

Proof. We start by constructing a number of objects generated when the DM’s util-

ity is u, understanding their analogs for utility û = φ ◦ u to be generated in the

same manner.

Let Ha,b denote the hyperplane of indifference, the set of beliefs at which the

DM is indifferent between a and b:

Ha,b B {x ∈ ∆ : Exu (a,θ) = Exu (b,θ)} .

By our genericity assumption, this hyperplane does not intersect the boundary of

the simplex at a vertex.

For any θ ∈ Θ, let vθ denote the corresponding vertex (as a point in the sim-

plex). Furthermore, for any θ ∈A and θ′ ∈ B, let eθ,θ′ denote the edge of ∆ “be-

tween the two states:”

eθ,θ′ B {x ∈ ∆|∃λ ∈ (0,1) : λvθ + (1−λ)vθ′ = x} ,

and let xθ,θ′ denote the point of indifference between the two actions lying on the

edge eθ,θ′ :

xθ,θ′ B
{
x ∈ eθ,θ′ : Exu (a,θ) = Exu (b,θ)

}
.

Equivalently, xθ,θ′ = eθ,θ′ ∩Ha,b.

Pa,b (a) is a convex set, so by the Krein-Milman theorem, it is the closed convex
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hull of its extreme points. Furthermore, its set of extreme points is the set

PB {vθ : θ ∈A} ∪
{
xθ,θ′ : θ ∈A, θ′ ∈ B

}
,

i.e., the set of vertices at which a is uniquely optimal, and the points on the edges

connecting the vertices at which a is uniquely optimal with the vertices at which b

is uniquely optimal.

Now, Pa,b (a) ⊆ P̂a,b (b) if and only if P ⊆ cchP̂, i.e., the set P lies within the closed

convex hull of the set P̂. Moreover, by construction P ⊆ cchP̂ if and only if for each

θ ∈ A and θ′ ∈ B, there exists some λ ∈ (0,1] such that xθ,θ′ = λx̂θ,θ′ + (1−λ)vθ.

That is, for each edge containing a point of indifference, the indifference point for

utility u, xθ,θ′ , must lie between the indifference point in decision problem for

utility û and the vertex vθ.

By Proposition 3.1, this holds for any strictly monotone concave transformation

of u, φ, if and only if for all θ ∈A and θ′ ∈ B, βθ′ ≥ αθ and αθ′ ≥ βθ. ■

A.4 Lemma 4.6 Proof

Proof. Observe that if x is such that Fxa and Fxb can be ranked according to first-

order stochastic dominance, single-crossing holds trivially. Now let us assume x is

such that Fxa and Fxb are FOSD-incomparable.

We define the following sets:

A◦B
{
θ ∈A : βθ < αθ′ ∀ θ′ ∈ B

}
, A†B

{
θ ∈A : ∃θ′ ∈ B : βθ = αθ′

}
,

B†B
{
θ′ ∈ B : ∃θ ∈A : βθ = αθ′

}
, B△B

{
θ′ ∈ B : βθ < αθ′ ∀ θ ∈A

}
,

A△B
{
θ ∈A : βθ′ > αθ ∀ θ′ ∈ B

}
, A‡B

{
θ ∈A : ∃θ′ ∈ B : βθ′ = αθ

}
,

B‡B
{
θ′ ∈ B : ∃θ ∈A : βθ′ = αθ

}
, & B◦B

{
θ′ ∈ B : βθ′ > αθ ∀ θ ∈A

}
.
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We assume without loss of generality that each set is nonempty.

Given some x ∈ ∆ that is such that denominators of the following fractions are

strictly positive (which is WLOG), we define

b0B

∫
θ∈A◦ βθdx (θ)∫
θ∈A◦ dx (θ)

, b1B

∫
θ∈A† βθdx (θ)∫
θ∈A† dx (θ)

, b2B

∫
θ′∈B‡ βθ′dx (θ′)∫
θ′∈B‡ dx (θ′)

,

b3B

∫
θ′∈B◦ βθ′dx (θ′)∫
θ′∈B◦ dx (θ′)

,

a0B

∫
θ′∈B† αθ′dx (θ′)∫
θ′∈B† dx (θ′)

, a1B

∫
θ′∈B△ αθ′dx (θ′)∫
θ′∈B△ dx (θ′)

, a2B

∫
θ∈A△ αθdx (θ)∫
θ∈A△ dx (θ)

,

and

a3B

∫
θ∈A‡ αθdx (θ)∫
θ∈A‡ dx (θ)

.

Note that by construction

b0 < b1 = a0 < a1, a2 < a3 = b2 < b3.

Evidently, Fxa (u) ≤ Fxb (u) for all u < b1. Then, either i. Fxa (b1) > Fxb (b1) or ii.

Fxa (b1) ≤ Fxb (b1). In the first case, we have Fxa (u) > Fxb (u) for all b1 ≤ u < b2. More-

over, 1 = Fxa (u) ≥ Fxb (u) for all u ≥ b2. Single-crossing (from below) is thus con-

firmed. In the second case, we still have 1 = Fxa (u) ≥ Fxb (u) for all u ≥ b2, so Fxa

crosses Fxb once from below at some u ∈ (b1,b2]. ■

A.5 Proposition 4.8 Proof

Proof. Recall

A ≡ {θ ∈Θ : αθ > βθ} and B ≡Θ \A =
{
θ′ ∈Θ : βθ′ > αθ′

}
;
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similarly, we define

B̃B
{
θ̃ ∈Θ : βθ̃ > τθ̃

}
and C̃ ≡Θ \ B̃ =

{
θ̃′ ∈Θ : τθ̃′ > βθ̃′

}
.

Strongly Connectedness: Take an arbitrary a and b, where WLOG supθA ≤ infθ′ B.

Then, for all θ ∈A, θ′ ∈ B,

βθ < αθ
Monotonicity of u

≤ αθ′ < βθ′ ,

so a ⪰S b.

Transitivity: Suppose a ⪰S b and b ⪰S c, which imply supθA ≤ infθ′ B and supθ̃B ≤

infθ̃′ C. Consequently, for all θ̃ ∈ B̃ and θ̃′ ∈ C̃,

τθ̃ < βθ̃ ≤ βθ̃′ < τθ̃′ .

This immediately implies for all θ ∈A, θ′ ∈ B, θ̃ ∈ B̃, and θ̃′ ∈ C̃,

τθ̃
b ⪰S c
≤ βθ < αθ

Monotonicity of u
≤ αθ′ < βθ′

b ⪰S c
≤ τθ̃′ ,

i.e., that a ⪰S c.

Antisymmetry and reflexivity of ⪰S are immediate. ■

A.6 Proposition 5.1 Proof

Proof. First,

Claim A.1.
∫

[u (wθ + y)−u (vθ + y)]dHθ (y) ≥
∫

[u (wθ + y)−u (vθ + y)]dHθ′ (y).

Proof. Naturally, this is equivalent to∫
[u (vθ + y)−u (wθ + y)]dHθ′ (y) ≥

∫
[u (vθ + y)−u (wθ + y)]dHθ (y) .
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Observe that for any y,

d
dy

[u (vθ + y)−u (wθ + y)] = u′ (vθ + y)−u′ (wθ + y) ≥ 0,

by the concavity of u plus the fact that wθ > vθ. ■

Second,

Claim A.2. φ (z)B
∫
u (z+ y)dH1 (y) is a concave function of z.

Proof. Directly

φ (λz1 + (1−λ)z2) =
∫

[u (λz1 + (1−λ)z2 + y)]dH1 (y)

≥
∫

[λu (z1 + y) + (1−λ)u (z2 + y)]dH1 (y) ,

by the concavity of u plus the fact that everything is positive. ■

Finally, Proposition 3.1 plus Claims A.1 and A.2, yield∫
u (wθ + y)dHθ (y)−

∫
u (vθ + y)dHθ (y)

wθ − vθ
≥
φ (wθ)−φ (vθ)

wθ − vθ

≥
φ (vθ′ )−φ (wθ′ )

vθ′ −wθ′

=

∫
u (vθ′ + y)dHθ′ (y)−

∫
u (wθ′ + y)dHθ′ (y)

vθ′ −wθ′
,

as desired. ■

B Quadratic Loss Examples

To make the concepts concrete, we consider a quadratic loss utility function, first

with two states, then with a continuum of states.

Let θ ∈ {0,1}, A = [0,1], and u(a,θ) = 1−(a−θ)2. We will first characterize the set

of actions that are safer than an arbitrary action a ≤ 1
2 . Observe that u(a,0) > u(a,1)
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if a < 1
2 , so that for any two actions b < a ≤ 1

2 , expected utility is monotone, and

|γa| < |γb| so that Proposition 3.3 implies that a is safer than b. Next, let a ≤ 1
2 < b,

so that u(a,0) ≤ u(b,1) and u(b,0) ≤ u(a,1) iff a ≥ 1− b. Accordingly, for an a ≤ 1
2 , a

is safer than b iff a ≥ b or a ≥ 1−b. In the monotone pieces of V , clearly actions are

totally ordered, but because V is not monotone overall, we cannot rank all actions

in terms of safety. Rather, it depends on how far away each is from the “safest"

action 1
2 .

Now consider the case where Θ = A = [0,1]. We demonstrate the mechanics of

Proposition 4.8 by comparing a utility function that does not satisfy the conditions

of the proposition to one that does. To begin, let u(a,θ) = 1− (a−θ)2.

Remark B.1. With utility u(a,θ) = 1−(a−θ)2, no two distinct actions can be ranked

according to ⪰S .

Proof. Let a < b. Observe that the state in which the DM is indifferent between the

two actions is θ̂ = a+b
2 , so that A =

[
0, a+b

2

]
and B =

[
a+b

2 ,1
]
. Now let us compare an

arbitrary θ ≤ θ̂ with θ′ ≥ θ̂. Observe that

αθ = 1− (a−θ)2 ≥ βθ′ = 1− (b −θ′)2 ⇔∣∣∣b −θ′∣∣∣ ≥ |a−θ| ,
but neither direction of this inequality holds for all θ ∈A and θ′ ∈ B. ■

However, a slight tweak to the decision problem, one that leaves the DM’s be-

havior unaltered, satisfies the assumptions of Proposition 4.8, and therefore ⪰S
totally orders the actions. Now let

u (a,θ) = 1− (a−θ)2 +θ2,

and consider an arbitrary pair of actions a < b. As before, the state in which the

DM is indifferent between the two actions is θ̂ = a+b
2 , and A and B are unchanged.
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To order a and b according to ⪰S , we need for every θ ≤ θ̂ and θ′ ≥ θ̂ to satisfy

αθ = 1− a2 + 2aθ ≤ βθ′ = 1− b2 + 2bθ′ ⇔ θ′ ≥ b
2 − a2

2b
+
a
b
θ,

and

αθ′ = 1− a2 + 2aθ′ ≥ βθ = 1− b2 + 2bθ ⇔ θ′ ≥ a
2 − b2

2a
+
b
a
θ,

which always hold. Consequently, a ⪰S b if and only if a ≤ b. As a ≤ b and b ≤ a if

and only if a = b, ⪰S is reflexive. Furthermore, ≥, and so ⪰S , are strongly connected

and transitive, so ⪰S is a total order over actions.
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