Making Information More Valuable

Mark Whitmeyer

Results

Applicatio

Doctor's visit

A patient (with a hurt hand) visits a doctor.

Three possibilities-three states of the world:

1. State 0: sprain.

- 2. State 1: broken bone, but not displaced.
- **3.** State 2: displaced fracture.

Motivation		

Application

Doctor's visit

Insurance dictates what doctor can do.

Suppose just one treatment available, so two options:

1. Cast on the hand: optimal in states 1 and 2.

2. Do nothing: optimal in state 0.

		-		
~		-	~	

Representation on the 2-simplex

Figure: Whether to cast.

Giving her another option

Insurance makes another treatment available-an additional action.

One possible new treatment: conservative treatment. Not optimal in any state but not that bad in any state.

Another possible new treatment: surgery. Optimal if and only if fracture is displaced (state 2).

140	. + i + .	n ti	00

New representation on the simplex I

Figure: Cast, surgery, or nothing.

h #.c	+	- t i.	00
	1419		

inaries

Results

Applicatio

Related Work & Conclusion

New representation on the simplex II

Figure: Cast, conservative, or nothing.

Mot	hent	ion
	ivat	

ninaries

Results

Applicatio

Related Work & Conclusion

The value of information: question

Which of these new treatments (if any) guarantees that the value of information for the doctor has increased (or hasn't decreased)?

The value of information: answer

Surgery, not the conservative treatment.

Why? The new action is **refining**.

Only one action's region of optimality (cast) is changed–if nothing is optimal at some belief beforehand, it is still optimal after.

Mot	incoti	ion
	ivau	

Information is valuable

to a Bayesian decision-maker (DM). What about *comparative* values for information?

Research question: What modifications of a DM's decision problem make information more valuable?

Two cases:

- 1. Buying some info.
- 2. Acquiring some info.

Motivation		

Related Work & Conclusion

Vague answer

More convexity...

Hint: correct but not in the sense of Pratt (1964).

Why relevant?

Regulators (principals in general): enact policies that modify incentives of firms/agents.

Often, add or subtract actions.

Contracts insurers may not offer.

Limits to amount vessels can fish.

Or, **scale** payoffs.

Insurance reduces risk-scale down.

Bonuses scale state-contingent payoffs up.

Formal Setting

aries

Results

Applicatio

Related Work & Conclusion

The Formal Setting

Mark Whitmeyer

	Formal Setting		
Setup I			

Compact grand set of actions \mathcal{A} .

Initially, DM has access to a compact subset of actions $A \subseteq A$.

Unknown state of the world, $\theta \in \Theta$ where $|\Theta| = n \in \mathbb{N}$.

Continuous utility function $u: \Theta \times \mathcal{A} \to \mathbb{R}$ & no action in \mathcal{A} is weakly dominated.

iminaries

Results

Application

Modifying the decision problem

Now let this DM have access to $\hat{A} \subseteq A$ and utility $\hat{u} : \Theta \times A \to \mathbb{R}$ instead.

Leading scenario: A finite & keep $u = \hat{u}$ but enlarge agent's action set by one, from A to $\hat{A} := A \cup \{\hat{a}\}$, where $\hat{a} \in \mathcal{A} \setminus A$. Agent becomes more flexible when A enlarged to \hat{A} .

Could also add multiple actions from $A \setminus A$ (preserving $u = \hat{u}$). Agent becomes much more flexible.

Or, Agent becomes much less flexible: from A to $\emptyset \neq \hat{A} \subset A$.

Another scenario: $A = \hat{A}$ but $\hat{u} = \phi \circ u$ for some monotone ϕ (Agent's utility is transformed).

Formal Setting		

One more preliminary

When the set of actions is A, define the value function

 $V(x)\coloneqq \max_{a\in A}\mathbb{E}_{x}u(a,\theta)\;,$

where $x \in \Delta(\Theta)$ is the agent's belief.

V is continuous and convex.

Finitely many actions \Rightarrow *V* is piecewise affine.

 \hat{V} is the value function after the transformation (set of actions is \hat{A}).

Formal Setting		

Obtaining some information

Equivalence between Bayesian learning from a signal $\pi: \Theta \to \Delta(S)$ (for compact set of signal realizations S) and (Bayes-plausible) distribution over posteriors $\Phi \in \mathcal{F}(\mu) \subset \Delta\Delta(\Theta)$.

Say that the transformation generates a greater value for information if

$$\mathbb{E}_{\Phi} \hat{V}(x) - \hat{V}(\mu) \ge \mathbb{E}_{\Phi} V(x) - V(\mu),$$

for all $\Phi \in \mathcal{F}(\mu)$ and $\mu \in \operatorname{int} \Delta(\Theta)$.

Formal Setting		

Research question 1

What are necessary and sufficient conditions on the decision problems for the transformation to generate a greater value for information?

Motivation Formal Setting				
---------------------------	--	--	--	--

Acquiring some information

Agent's flexible information acquisition problem

$$\max_{\Phi\in\mathcal{F}(\mu)}\int_{\Delta(\Theta)}V(x)d\Phi(x)-D(\Phi),$$

where *D* is a uniformly posterior-separable cost functional, i.e.,

$$D(\Phi) = \int_{\Delta(\Theta)} c(x) d\Phi(x) - c(\mu)$$

for some strictly convex, continuous, function $c: \Delta(\Theta) \to \mathbb{R}$.

Formal Setting		

Acquiring some information

Say that the transformation does not generate less information acquisition if for any prior $\mu \in int \Delta(\Theta)$, UPS cost functional *D*, and optimal solution to the agent's information acquisition problem when her value function is *V*, Φ_V^* , there exists an optimal solution to the agent's information acquisition problem when her value function is \hat{V} , $\Phi_{\hat{V}}^*$, that is not a strict mean-preserving contraction of Φ_V^* .

DM doesn't want to acquire less information.

Formal Setting		

Research question 2

What are necessary and sufficient conditions on the decision problems for the transformation to not generate less information acquisition?

	Preliminaries		

Preliminaries

	Preliminaries		

Value functions and polyhedral subdivisions

Recall value function representation

 $V(x) \coloneqq \max_{a \in A} \mathbb{E}_{x} u(a, \theta).$

(Finite *A*): Project *V* onto $\Delta(\Theta)$ yielding a finite collection *C* of polytopes *C_i*:

$$C_i := \{x \in \Delta \mid \mathbb{E}_x u (a_i, \theta) = V(x)\}.$$

Action a_i is optimal for any belief $x \in C_i$ and uniquely optimal for any $x \in int C_i$.

C is a **regular polyhedral subdivision** of $\Delta(\Theta)$. To save space, just **subdivision**.

	Preliminaries		

Subdivision illustration

Figure: Two States, Three Actions

	Preliminaries		

Subdivision illustration II

Figure: Three States, Three Actions

	Preliminaries		

Adding a new action

Adding \hat{a} leads to a new \hat{V} and a new \hat{C} .

Subdivision $P = \{P_1, ..., P_l\}$ is finer than (or refines) a subdivision $Q = \{Q_1, ..., Q_m\}$ if for each $j \in \{1, ..., l\}$, there exists $i \in \{1, ..., m\}$ such that $P_j \subseteq Q_j$.

Write this $P \geq Q$ (and > when the relation is strict).

	Preliminaries		
Finer			

	Preliminaries		
Not finer			

	Preliminaries		

Potential incomparibility of subdivisions

Remark. Any of the following can occur:

C ≻ Ĉ;
C < Ĉ;
C = Ĉ;
C and Ĉ incomparable.

	Preliminaries		

Subdivision comparisons I

	Preliminaries		

Subdivision comparisons II

	Preliminaries		

Subdivision comparisons III

Making Information More Valuable

	Results	

Results

	Results	

Answering the research questions

New action \hat{a} is **refining** if $\hat{C} \geq C$.

 \hat{a} can be a (partial) replacement for most one action in A.

	Results	

Main result

Theorem. The following are equivalent:

- 1. The transformation generates a greater value for information.
- 2. The transformation does not generate less information acquisition.
- **3.** $\hat{V} V$ is convex.
- 4. $\star \hat{C} \succeq C \star$

	Results	

Proof step 1

Lemma. $\hat{V} - V$ is convex $\Leftrightarrow \hat{C} \geq C$.

Proof. Easy.
		Results	
Proof step 2			

Lemma. $\hat{V} - V$ is convex \Rightarrow For any $\mu \in \operatorname{int} \Delta(\Theta)$ and $\Phi, \Upsilon \in \mathcal{F}_{\mu}$ with $\Phi \in MPS(\Upsilon)$, $\mathbb{E}_{\Phi}\hat{V}(x) - \mathbb{E}_{\Upsilon}\hat{V}(x) \ge \mathbb{E}_{\Phi}V(x) - \mathbb{E}_{\Upsilon}V(x)$.

Proof. Rearrange definition of MPS:

$$\mathbb{E}_{\Phi}\left[\hat{V}(x) - V(x)\right] \geq \mathbb{E}_{\Upsilon}\left[\hat{V}(x) - V(x)\right].$$

		Results	
Proof step 3			

Lemma. $\hat{V} - V$ is convex \Rightarrow The transformation does not generate less information acquisition.

Proof. Similar to previous lemma. Fix an optimizer Φ^* in \mathcal{D} and suppose FSOC every optimizer in $\hat{\mathcal{D}}, \hat{\Phi}^*$, is a strict MPC of Φ^* .

$$\mathbb{E}_{\hat{\Phi}^*}\hat{V} - D\left(\hat{\Phi}^*\right) > \mathbb{E}_{\Phi^*}\hat{V} - D\left(\Phi^*\right).$$

Analogously,

$$\mathbb{E}_{\Phi^*}V - D\left(\Phi^*\right) \geq \mathbb{E}_{\hat{\Phi}^*}V - D\left(\hat{\Phi}^*\right).$$

Combining these produces

$$\mathbb{E}_{\hat{\Phi}^*}\left[\hat{V}-V\right] > \mathbb{E}_{\Phi^*}\left[\hat{V}-V\right].$$

		Results	
Something s	stronger		

Yoder (2022): $(\hat{V} - V)$'s convexity \Rightarrow the intersection of the support of any $\hat{\Phi}^*$ with the convex hull of the support of any Φ^* is a (possibly empty) subset of the extreme points of the convex hull of the support of Φ^* .

Implies the lemma.

Denti (2022): an (almost) stronger result as well.

Both: vaguely $\hat{\Phi}^*$ more extreme than Φ^* . Rely on posterior-separability.

		Results		
--	--	---------	--	--

One wrong and two rights

		Results	
Proof step 4			

Lemma. The transformation does not generate less information acquisition $\Rightarrow \hat{V} - V$ is convex.

Proof. Contraposition. Suppose $\hat{V} - V$ isn't convex.

Let $\rho(x)$ be some strictly convex continuous function on $\Delta(\Theta)$ and for arbitrary $\varepsilon > 0$, define

$$c_{\varepsilon}(x) \coloneqq \varepsilon \rho(x) + \hat{V}(x).$$

For all sufficient small ε , can find $\mu \in \operatorname{int} \Delta \Theta$ s.t. DM with V acquires strictly more info than with \hat{V} (latter acquires nothing).

	Results	

Proof step 5 (FINAL STEP)

Lemma. The transformation generates a greater value for information $\Rightarrow \hat{V} - V$ is convex.

Proof. Again by contraposition. Take an optimal $F \neq \delta_{\mu}$ for *V* from previous slide/Lemma and uniquely optimal δ_{μ} for \hat{V} . By construction,

$$\mathbb{E}_{F}V-V(\mu)>C(F)>\mathbb{E}_{F}\hat{V}-\hat{V}(\mu).$$

	Results	

Acquiring some information redux

Say that the transformation generates more information acquisition if for any prior $\mu \in \operatorname{int} \Delta(\Theta)$, UPS cost functional *D*, and optimal solution to the agent's information acquisition problem when her value function is *V*, Φ_V^* , there exists an optimal solution to the agent's information acquisition problem when her value function is \hat{V} , $\Phi_{\hat{V}}^*$, that is a mean-preserving spread of Φ_V^* .

DM wants to acquire more information.

			Results	
Two state	es and more (ir	fo acquisition)		

Theorem. If $|\Theta| = 2$, the following are equivalent:

- 1. The transformation generates a greater value for information.
- 2. The transformation generates more information acquisition.

3.
$$\hat{V} - V$$
 is convex.

$$4. \star \hat{C} \succeq C \star$$

Follows from Yoder (2022) and Curello & Sinander (2022).

Why two states?

	Results	

More than two states and more (info acquisition)

Proposition. If $|\Theta| \ge 3$, a transformation generates more information acquisition if and only if $\hat{V} - V$ and/or V is affine.

Sufficiency is immediate.

Necessity: can always find a cost function to make binary learning optimal, but on different line segments.

Motivation Formal Setting

Preliminaries

Results

Applications

Related Work & Conclusion

Beyond Adding an Action

	Results	

Adding multiple actions

Agent **becomes much more flexible** when *A* enlarged to $\hat{A} := A \cup B$, where *B* is a finite subset of $A \setminus A$, and $\hat{u} = u$.

		Results Application	
--	--	---------------------	--

Adding multiple actions

Remark.
$$\hat{V} - V$$
 convex $\Rightarrow \hat{C} \geq C$.

$\hat{C} \geq C \Rightarrow \hat{V} - V$ convex?

Motivation

mal Setting

reliminaries

Results

Applications

Related Work & Conclusion

No

Figure: $\hat{C} > C$ But $\hat{V} - V$ Not Convex

	Results	

A sufficient condition via subdivisions

Set of actions being added, *B*, is **totally refining** if each $b \in B$ is refining.

B is totally refining $\Rightarrow \hat{V} - V$ is convex. Converse is false

Proposition. Much more flexibility generates a greater value for information and does not generate less information acquisition if the set of additional actions is totally refining.

Non-necessity of total refinement

Figure: $\hat{V} - V$ Convex But *B* Not Totally Refining

	Results	

Amost-necessity of total refinement

For *B*, understand $u \in \mathbb{R}^{B \times \Theta}$

Denote \hat{V}_u new value function, given u.

Making the agent much more flexible generically generates a greater value for information and does not generate less information if $\hat{V}_{\bar{u}} - V$ is convex for all \tilde{u} in an open ball around u.

		Results	
Fragility			

Proposition. Making the agent much more flexible generically generates a greater value for information and does not generate less information acquisition only if the set of additional actions is totally refining.

Proof. $\hat{C} \geq C$ is necessary for $\hat{V} - V$'s convexity. But if *B* not totally refining, value function is partially "lifted up." Replicates subdivision but this is fine-tuned system of equations. Can always perturb and shatter $\hat{C} \geq C$.

Fragility illustration

Removing an action

Agent **becomes much less flexible** if set of actions reduced from A to $\hat{A} \neq \emptyset$.

What makes information more valuable?

Nothing	

Proposition. Making the agent much less flexible does not generate a greater value for information and may generate less information acquisition.

Proof. Take $x \in \text{int } C_i$ for some removed a_i (so $\hat{V}(x) < V(x)$), and $\mu \neq x'$ for which $V(\mu) = \hat{V}(\mu)$, $V(x') = \hat{V}(x')$ and $\mu \in \ell(x, x')$.

Then,

$$\lambda \underbrace{\left(\hat{V}(x) - V(x)\right)}_{<0} + (1 - \lambda) \underbrace{\left(\hat{V}(x') - V(x')\right)}_{=0} - \underbrace{\left(\hat{V}(\mu) - V(\mu)\right)}_{=0} < 0,$$

so $\hat{V} - V$ is not convex.

	Results	

Transforming the agent's utility

Agent's **utility is transformed** if set of actions stays the same but $\hat{u} = \phi \circ u$ for strictly increasing ϕ .

What sorts of transformations make $\hat{V} - V$ convex?

	Results	

Affine transformations of *u*

 $u \mapsto \alpha u + \beta =: \hat{u}$, where $\alpha \in \mathbb{R}_{++}$ and $\beta \in \mathbb{R}$.

Obviously subdivision is preserved, but what about $\hat{V} - V$?

Proposition. A positive affine transformation of the agent's utility function, u, generates a greater value for information and does not generate less information acquisition if and only if $\alpha \ge 1$.

Need utilities "scaled up."

	Results	

What scales up utilities?

- 1. Direct manipulation (by, e.g., a principal). Of course.
- 2. Repetition: repeat a decision problem > 1 times.
- 3. Aggregate risk with CARA utility.

		Results	
Aggregat	e risk + CARA		

 $\Theta \subset \mathbb{R}_+.$

Agent's endowed wealth is (finite-mean) random variable $Y \sim H$, uncorrelated with θ .

Utility function over terminal wealth, w, is (CARA): $v(w) = -\exp(-\gamma w)$, w/ $\gamma \in \mathbb{R}_{++}$.

In the language of this paper,

$$u(a,\theta) = -\int \exp\left(-\gamma \left(f_a(\theta) + y\right)\right) dH(y) = -\exp\left(-\gamma f_a(\theta)\right) \int \exp\left(-\gamma y\right) dH(y).$$

		Results	Applications	Related Work & Conclusion
Aggregate	risk + CARA			

Well known: CARA utility means wealth/aggregate risk does not affect decision-making.

A change to *Y*'s distribution just scales *u linearly*.

Aggregate risk increases if *H* transformed to $\hat{H} \in MPS(H)$.

$$u \mapsto \underbrace{\frac{\int \exp(-\alpha y) d\hat{H}(y)}{\int \exp(-\alpha y) dH(y)}}_{\alpha} u \eqqcolon \hat{u}$$

Motivation Formal Setting Preliminaries **Results** Applications Related Work & Conclusion

CARA + Aggregate risk

Corollary. For an agent with CARA utility, increased aggregate risk generates a greater value for information and does not generate less information acquisition.

Decision-making (in decision problem) unchanged, **but value of information changes**.

		Applications	

Application 1. Delegation

Extreme actions in delegation

Szalay (2005) "The Economics of Clear Advice and Extreme Options:"

Delegation problem with interval state space and action, say [0, 1].

Principal and agent with common quadratic loss–*ex post* agreement on optimal action.

Agent pays private cost to acquire information.

Delegation problem: WLOG for principal to allow agent to choose action from closed subset of [0, 1].

Optimal delegation: prohibit actions within a certain distance around mean, i.e., delegation set is $[0, \alpha] \cup [\beta, 1]$, $0 < \alpha < \beta < 1$.

		Applications	

Our delegation problem

Similar problem: same utility function for principal and agent.

Agent can acquire information by paying some cost $\gamma > 0$ to see the realization of some signal.

Agent initially has (finite) action set A (in which no action is weakly dominated).

Principal wants to know whether to give agent access to an additional finite set of actions, *B*, before the agent acquires information.

Remark. The principal prefers to give the agent access to an additional set of actions, *B*, if it is totally refining.

		Applications	

But is there any subset of actions that the principal would like to remove?

		Applications	

Application 2. Monopolistic Screening

		Results	Applications	Related Work & Conclusion
Selling I	nformation			

Principal (monopolist) and agent.

Two States.

Agent's type ω_i corresponds to her set of available actions $A_i \subseteq A$.

Just two types, $\omega_1 > \omega_2$.

 $V_1 - V_2$ is convex.

Principal and agent share a common prior $\mu \in int \Delta(\Theta)$

Principal can "produce" any distribution over posteriors Φ subject to a UPS cost $D(\Phi)$.

By the revelation principle, she offers a contract $((t_1, \Phi_1), (t_2, \Phi_2))$.

		Applications	

Selling Information: First Best

Principal solves

$$\max_{\Phi_{1}\in\mathcal{F}(\mu)}\left\{\int_{0}^{1}V_{1}\left(x\right)d\Phi_{1}\left(x\right)-\kappa D\left(\Phi_{1}\right)\right\},\quad\text{and}\quad\max_{\Phi_{2}\in\mathcal{F}(\mu)}\left\{\int_{0}^{1}V_{2}\left(x\right)d\Phi_{2}\left(x\right)-\kappa D\left(\Phi_{2}\right)\right\},$$

and charges each type a price produced by that type's binding participation constraint.

 $V_1 - V_2$ convex $\Rightarrow \omega_1$ is provided with "higher quality" than type ω_2 : $\Phi_{1,FB}$ is an MPS of $\Phi_{2,FB}$.

 $t_1 \ge t_2$.

			Applications	
Selling in	fo: second bes	t		

 IR_2 and IC_1 bind (as usual). Principal's objective reduces to

$$(1-\rho)\left(\frac{1}{1-\rho}\int_{0}^{1}(V_{2}(x)-\rho V_{1}(x))\,d\Phi_{2}(x)-\kappa D(\Phi_{2})\right)+\rho\left(\int_{0}^{1}V_{1}(x)\,d\Phi_{1}(x)-\kappa D(\Phi_{1})\right),$$

where $\rho \coloneqq \mathbb{P}(\omega_1)$.

$$V_2 - \frac{V_2 - \rho V_1}{1 - \rho}$$
 is convex $\Rightarrow \Phi_{2,SB}$ an MPC of $\Phi_{2,FB}$.

Downward distortion for the "low" type relative to the first-best optimum.

 $\Phi_{1,SB} = \Phi_{1,FB}$. No output (quality of information) distortion at the top.

Motivation

d Setting

Preliminaries

Results

Applica

Related Work & Conclusion

Related Work & Conclusion

Mark Whitmeyer

Preliminaries

Results

Applications

Related work

Value of information: Blackwell (1951, 1953), Athey & Levin (2018), De Lara & Gossner (2020), Radner & Stiglitz (1984), De Lara & Gilotte (2007), and Chade & Schlee (2002).

Rational inattention: Especially Caplin & Martin (2021):

- ► (Binary) relation between joint distributions over actions and states.
- One such joint distribution dominates another if for every utility function, every experiment consistent with the former is more valuable than every experiment consistent with the latter.
- Here, a partial order over (equivalence classes of) value functions: one dominates another if information must be more valuable for the former.
Preliminaries

Results

Applications

Related work

Comparative Statics: Especially Yoder (2022) and Curello & Sinander (2022): what changes to a persuader's indirect payoff lead to greater (or no less) information provision?

Regular Polyhedral Subdivisions: Kleiner, Moldovanu, Strack, & yt (2023*).

Risk Aversion: Pease, & yt (2023): binary relation between actions in a decision problem. What actions have beliefs comparatively robust to increased risk aversion?

		Applications	Related Work & Conclusion
All in all,			

"Right" notion of convexity for comparing utility functions: $u = \phi \circ \hat{u}$ for monotone concave ϕ .

"Right" notion of convexity for comparing decision problems: $\hat{V} - V$ is convex.

Thanks for coming!