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A Sufficient Conditions for a Positive Value of Information 1

A Sufficient Conditions for a Positive Value of Informa-

tion

The text of Whitmeyer (2019) contains Proposition 5.5, which states that the value of

information is positive in two-action signaling games in which the sender’s messages are

costless. Here, we provide additional sufficient conditions that may be of interest. In

particular, we establish that the positive value of information result holds if there are just

two states (regardless of whether the game is cheap talk).

Theorem A.1. In signaling games without opacity design, the value of information is always

positive for the receiver, provided

1. There are two states (or fewer); or

2. The receiver has two actions (or fewer); and
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(a) There are three states (or fewer); or

(b) There are two messages (or fewer); or

(c) The game is cheap talk.

Note that throughout the proof of this theorem the receiver may not design the opacity

in the game that follows. In addition, we observe that the result holds trivially if there

exists a (fully) separating equilibrium and so in the proof(s) below we restrict attention

to the cases where such separating equilibria do not exist.

First, we establish that it is WLOG to restrict attention to equilibria in which there is

no state in which the sender mixes over messages following which the receiver strictly

prefers different actions.

Lemma A.2. In games, there exists a receiver-optimal equilibrium in the sender, in any state,

mixes over messages that induce beliefs at which the receiver strictly prefers different actions.

Proof. Let each action be strictly optimal in at least one state (or else the result is trivial).

We may partition the set of states Θ = Θ1 ⊔Θ2, where Θ1 is the set of states in which

the receiver strictly prefers to choose action a1, and Θ2 is the set of states in which the

receiver strictly prefers to choose action a2. It is WLOG to suppose that there are no states

in which the receiver is indifferent between her two actions.

Equivalently, vi B uR(a1,θi) > uR(a2,θi)C wi for all θi ∈Θ1, and wi > vi for all θi ∈Θ2.

Denote

Θ1 = {θ1, . . . ,θt} , and Θ2 = {θt+1, . . . ,θn}

Consider an equilibrium in which the sender mixes in at least one state, θk. WLOG, let

θk ∈ Θ1, i.e., in that state the receiver strictly prefers to choose action a1. Next, suppose

that θk mixes over a subset of the set of messages, Mk, where

Mk = {m1, . . . ,ml}

with a generic element mk ∈Mk. Moreover, Mk is partitioned by three sets, M0
k , M1

k and

M2
k , where M0

k is the set of messages after which the receiver is indifferent between her

two actions, M1
k is the set of messages after which the receiver strictly prefers a1, and
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M2
k is the set of messages after which the receiver strictly prefers a2. By assumption,

neither M1
k nor M2

k is the empty set, in which case we can pick two messages, m1 ∈ M1
k

and m2 ∈M2
k . The receiver’s expected payoff at this equilibrium can be written as

V (µ) = µ (θk) (σk (m1)vk + σk (m2)wk) +γ

where γ is the remainder of the receiver’s payoff that–crucially for the sake of this proof–

does not depend on σk (m1) or σk (m2). However, the receiver’s payoff strictly increases if

instead θk modified his mixed strategy so that σ̂k (m1) = σk (m1) + σk (m2) and σ̂k (m2) = 0

since vk > wk (recall that we stipulated that θk ∈ Θ1). Moreover, it is easy to see that this

is also an equilibrium: θk is indifferent over any pure strategy in the support of his mixed

strategy; and following messages m1 and m2 under the new mixture, the receiver still

finds it optimal to choose a1 and a2, respectively (and the receiver’s beliefs and payoffs

following any other message are unchanged).

Since m1 ∈ M1
k and m2 ∈ M2

k were two arbitrary messages, and θk was an arbitrary

state, the result follows. ■

Second, we discover that if there is a receiver-optimal equilibrium at belief µ0 in which

at most two messages are used, then any information benefits the receiver. Formally,

Lemma A.3. In any signaling game, if there is a receiver-optimal equilibrium at belief µ0 in

which at most two messages are used, then any initial experiment benefits the receiver.

Proof. Again, let each action be uniquely optimal in at least one state, and let two mes-

sages be used in the receiver-optimal equilibrium at belief µ0 (if only one message is used,

the receiver obtains the pooling payoff at µ0, and hence any initial experiment must be to

her profit).

In addition, we may, WLOG, impose that at µ0 there is an equilibrium such that, fol-

lowing each message, m1 and m2, different actions, a1 and a2, respectively, are strictly

optimal. Otherwise, this would just yield the pooling payoff and the result would be triv-

ial. By Lemma A.2, this imposition ensures that the sender is choosing a pure strategy in

each state.
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Next, partition set Θ1 into two sets, Ge
1 and Gd

1 , which correspond to the states in

which the sender chooses m1 and m2, respectively. Likewise, partition set Θ2 into two

sets Ge
2 and Gd

2 which correspond to the states in which the sender chooses m2 and m1,

respectively.

These sets are, explicitly,

Ge
1B {θ1, . . . ,θm} , Gd

1 B {θm+1, . . . ,θt}

Ge
2B {θt+1, . . . ,θr} , Gd

2 B {θr+1, . . . ,θn}

Moreover, note that it is possible that some are the empty set; although of course if Gd
2

is nonempty then Ge
1 cannot be empty, and similarly for Gd

1 and Ge
2.

Next, since we have imposed that an equilibrium of the above form exists at µ0, such

an equilibrium must exist at any belief µ such that the following condition holds:

Condition A.4.

m∑
i=1

µ (θi)vi +
n∑

j=r+1

µ
(
θj

)
vj ≥

m∑
i=1

µ (θi)wi +
n∑

j=r+1

µ
(
θj

)
wj

and
r∑

i=t+1

µ (θi)wi +
t∑

j=m+1

µ
(
θj

)
wj ≥

r∑
i=t+1

µ (θi)vi +
t∑

j=m+1

µ
(
θj

)
vj

Accordingly, at µ0, the receiver’s payoff is

V T (µ0) =
m∑
i=1

µ0 (θi)vi +
n∑

j=r+1

µ0

(
θj

)
vj +

r∑
i=t+1

µ0 (θi)wi +
t∑

j=m+1

µ0

(
θj

)
wj

WLOG, we may suppose that there are just three signal realizations: one, A, after

which Condition A.4 holds; one, B, after which there is a pooling equilibrium for which

a1 is optimal; and one, C, after which there is a pooling equilibrium for which a2 is

optimal. We may make this assumption since the receiver is only aided by multiple signal

realizations in each pooling region. It is possible that there may be other, better equilibria

for the receiver in such regions, but the proof requires only use of the pooling payoff
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which bounds the receiver’s payoff from below. Then the receiver’s expected payoff from

the initial signal is bounded below by

p

 m∑
i=1

µA (θi)vi +
n∑

j=r+1

µA
(
θj

)
vj +

r∑
i=t+1

µA (θi)wi +
t∑

j=m+1

µA
(
θj

)
wj


+q

 m∑
i=1

µB (θi)vi +
n∑

j=r+1

µB
(
θj

)
vj +

r∑
i=t+1

µB (θi)vi +
t∑

j=m+1

µB
(
θj

)
vj


+ s

 m∑
i=1

µC (θi)wi +
n∑

j=r+1

µC
(
θj

)
wj +

r∑
i=t+1

µC (θi)wi +
t∑

j=m+1

µC
(
θj

)
wj


(A1)

where

pB Pr(A), qB Pr(B), sB Pr(C), and p+ q+ s = 1,

and pµA(θi) + qµB(θi) + sµC(θi) = µ0(θi) for all i. Expression A1 can be simplified to

V T (µ0) + qΥ + sΓ

where

Υ B

 r∑
i=t+1

µB (θi) (vi −wi) +
t∑

j=m+1

µB
(
θj

)(
vj −wj

)
and

Γ B

 m∑
i=1

µC (θi) (wi − vi) +
n∑

j=r+1

µC
(
θj

)(
wj − vj

)
Since a1 is optimal in the pooling equilibrium following B and a2 is optimal in the pooling

equilibrium following C we must have

m∑
i=1

µB (θi) (vi −wi) +
n∑

j=r+1

µB
(
θj

)(
vj −wj

)
≥

r∑
i=t+1

µB (θi) (wi − vi) +
t∑

j=m+1

µB
(
θj

)(
wj − vj

)
(A2)
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and

m∑
i=1

µC (θi) (vi −wi) +
n∑

j=r+1

µC
(
θj

)(
vj −wj

)
≤

r∑
i=t+1

µC (θi) (wi − vi) +
t∑

j=m+1

µC
(
θj

)(
wj − vj

)
Moreover, since Condition A.4 does not hold for belief µB, we must have either

m∑
i=1

µB (θi)vi +
n∑

j=r+1

µB
(
θj

)
vj <

m∑
i=1

µB (θi)wi +
n∑

j=r+1

µB
(
θj

)
wj (A3)

and/or
r∑

i=t+1

µB (θi)wi +
t∑

j=m+1

µB
(
θj

)
wj <

r∑
i=t+1

µB (θi)vi +
t∑

j=m+1

µB
(
θj

)
vj (A4)

Suppose that Inequality A3 holds. Then we may substitute it into Inequality A2 and

cancel:

r∑
i=t+1

µB (θi) (vi −wi) +
t∑

j=m+1

µB
(
θj

)(
vj −wj

)
≥ 0

Hence, Υ is positive. On the other hand, if Inequality A4 holds then we may substitute it

directly into Υ , which again must be positive.

A symmetric procedure works at belief µC to establish that Γ also must be positive.

Since Γ and Υ are both positive, Expression A1, the receiver’s payoff from learning, must

be at least weakly greater than V T (µ0). We have exhausted every case, and so conclude

that any initial experiment benefits the receiver. ■

The costless nature of messages in cheap talk games, in conjunction with Lemma A.2,

allows us to conclude that there must be a receiver-optimal equilibrium at belief µ0 in

which at most two messages are used. Refer to the text for more on this portion of the

result. Next, we establish that if there are just two states, then there is always a receiver-

optimal equilibrium in which at most two messages are used.

Lemma A.5. Let the number of states, n, equal two. Then, any equilibrium that yields the

receiver a payoff of v in which l > 2 messages are used, there exists an equilibrium in which at

most two messages are used that yields the receiver a payoff that is weakly higher than v.
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Proof. Suppose that l > 2 messages are used. If there exist messages in the support of

each state’s strategy at which the receiver is certain of the state, then there must exist a

separating equilibrium; hence, the result is trivial.

Suppose that there exist no separating equilibria. Then, it is WLOG to focus on just

two classes of l-message equilibria: i. The sender chooses a mixed strategy with full

support in both states, or ii. In one state (say θH ), the sender chooses a mixed strategy

with full support, and in the other chooses a mixed strategy with support on all but one

message.1

In both cases, there will be l resulting equilibrium beliefs µ′1 < µ′2 < · · · < µ′l , where in

case ii. µ′l = 1. However since the sender is mixing in each state, he must be indifferent

over each message in the support of their mixed strategy (in each state). Hence, there

must also be an equilibrium in both cases in which only two messages are used, which

induce beliefs µ′1 and µ′l . Indeed such an equilibrium can be constructed by taking each

on-path message mi with the associated induced belief µ′i with i , 1, l and moving weight

from each player’s mixed strategy on mi to message ml at the ratio

∆ (σH (mi))
∆ (σL(mi))

=
∆ (σH (ml))
∆ (σL(ml))

=
(1−µ)µ′l
(1−µ′l)µ

Such a process decreases µ′i and by construction maintains µ′l . This can be done until

µ′i = µ′1 for each i.

The Blackwell experiment that corresponds to this new, binary, distribution of pos-

teriors is more informative than in the original situation, where l messages were used.

Hence, the receiver’s payoff must be weakly higher in the two message equilibrium. ■

Lemmata A.3 and A.5 imply that in any signaling game with two states and two ac-

tions, ex ante learning always benefits the receiver. Perhaps surprisingly, the value of

information is also always positive for the receiver in three state, two action signaling

games. Viz,

1Indeed, any other l message equilibria in a game that does not admit a separating equilibria must have
multiple messages that are chosen in one state, and given the existence of such an equilibrium, there must
exist an equilibrium in which just one of those “single state” messages is used.
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Lemma A.6. In signaling games with three states and two actions, the receiver’s payoff is

convex in the prior.

Proof. Denote the set of (three) states by Θ = {θL,θM ,θH }. Recall our convention vi B

uR (a1,θi) and wi B uR (a2,θi), for all i = L,M,H . WLOG, we may assume2 that action

a1 is strictly optimal in states θL and θH , and action a2 is strictly optimal in state θM :

vL > wL, vH > wH , and wM > vM .

Next, observe that we can picture any belief in the (x,y)-coordinate plane, where the x-

axis corresponds to µM , and the y-axis corresponds to µH . Define region R1 as the region

in which a1 is optimal and R2 as the region in which a2 is optimal. Each region, R1 and

R2, is compact and convex, and the two regions share a boundary that is a line segment.

Define R to be the simplex of beliefs, R = R1 ∪R2.

From Lemma A.2, at the prior µ0, it suffices to consider just three possible arrange-

ments of the posteriors that are induced at equilibrium:

Case 1: All posteriors lie in one region.

Case 2: All posteriors that follow messages chosen by θM fall in region R2, where

there is at least one posterior that does not lie on the boundary R1∩R2; and all posteriors

that follow messages chosen by θL and θH fall in region R1, where there is at least one

posterior that does not lie on the boundary R1 ∩R2.

Case 3: All posteriors that follow messages chosen by θH (θL) fall in region R1, where

there is at least one posterior that does not lie on the boundary R1∩R2; and all posteriors

that follow messages chosen by θL (θH ) and θM fall in region R2, where there is at least

one posterior that does not lie on the boundary R1∩R2. By symmetry, we need focus only

on the case where the posteriors that follow θH ’s messages fall in region R1.

Note that throughout this proof, by Lemma A.2, each belief that is not on the line

segment R1 ∩R2 must lie on the boundary of the triangle (2-simplex) of beliefs.

In the first case, the receiver clearly benefits from any initial experiment. The payoff

under the prior is the pooling payoff, and so ex ante learning can only aid the receiver.

The second case is trickier: there are two sub-cases that we need to examine:

2Otherwise, this is just the two state case.
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Case 2a: The mixed strategy in each state has support on at least one message that

induces a belief that is not on the boundary R1 ∩R2.

Case 2b: In one state, say θL, the sender mixes only over messages that induce beliefs

that are on the boundary R1 ∩R2.

In case 2a, it is easy to see that there must also be a receiver-optimal equilibrium in

which θH and θL each choose one message (possibly the same message) that induces a

belief in R\R2, and θM chooses one message that induces a belief in R\R1. This is clearly

an equilibrium, since the sender in each state already has support of his mixed strategy

on his respective message; is optimal for the receiver, since this yields the receiver the

maximum possible payoff (the separating payoff); and, moreover, does not depend on the

prior. Hence, any initial experiment benefits the receiver.

In case 2b, there must exist a receiver-optimal equilibrium in which θH sends just

one message, mH , which induces a belief in R \R2; θL sends just one message, mL, which

induces a belief on the boundary R1 ∩R2; and θM mixes between mL and mM , the latter

which induces a belief in R \R1. We will return to this distribution of posteriors shortly.

Case 3 also must be divided into two cases:

Case 3a: θL mixes only over messages that induce beliefs that are on the boundary

R1 ∩R2.

Case 3b: θL mixes over at least one message that induces a belief in R \R1.

Case 3a is identical to case 2b. In case 3b, there must exist a receiver-optimal equilib-

rium in which θH sends just one message, mH , that induces a belief in R \R2; and θL and

θM pool on one message mp, that induces a belief in R \R1. Here, only two messages are

used and so by Lemma A.3 any initial experiment benefits the receiver.

Consequently, it remains to consider the scenario that case 2b reduces to: for prior

µ0 just three messages are used as follows: θH separates and chooses message mH , θL

chooses message mL and θM mixes between two messages, mL and mM , in such a way that

the receiver is indifferent over her actions following mL (note, that there is an equivalent

scenario that is obtained by interchanging θH and θL).
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The prior µ0 must be such that

µ0
L ≤

wM − vM
vL −wL

µ0
M

and the receiver’s payoff is

v B V (µ0) = µ0
HvH +µ0

MwM +µ0
LwL

Call this equilibrium S†. It is clear that WLOG we may focus on an initial experiment

that is binary, and which yields just two beliefs µ1 and µ2, where µ1 is a belief such S† is

feasible, and µ2 is a belief such that S† is infeasible. To see that this is WLOG, note that

if there are multiple initial experiment realizations after which S† is feasible, the receiver

achieves at least the payoff as in the case when there is just one such initial experiment

realization. Likewise, if there are multiple initial experiment realizations after which S†

is infeasible, since we need only assume the pooling payoff in this case, it is again clear

that the receiver achieves at least the payoff as in the case where there is just one such

initial experiment realization.

Thus, the initial experiment, ζ, yields µ1 =
(
µ1
L,µ

1
M ,µ1

H

)
with probability p and µ2 =(

µ2
L,µ

2
M ,µ2

H

)
with probability (1−p), where pµ1 +(1−p)µ2 = µ0. For belief µ2, the receiver’s

payoff is bounded below by the pooling equilibrium payoff, and so we assume that this is

indeed the payoff. Note that since µ2 is not a belief for which S† is feasible, we must have

µ2
L >

wM − vM
vL −wL

µ2
M (A5)

Claim A.7. For belief µ2, action a1 is optimal.

Proof. Suppose for the sake of contradiction that a1 is not optimal. That is,

µ2
LwL +µ2

MwM +µ2
HwH > µ2

LvL +µ2
MvM +µ2

HvH
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But then

µ2
LwL +µ2

MwM +µ2
HwH > µ2

LwL +µ2
MwM +µ2

HvH

µ2
HwH > µ2

HvH

where the second inequality follows from Inequality A5. This is a contradiction. ■

Thus, a1 is optimal and so the receiver’s expected payoff is

V = p
[
µ1
HvH +µ1

MwM +µ1
LwL

]
+ (1− p)

[
µ2
LvL +µ2

MvM +µ2
HvH

]
which reduces to

V = v + (1− p)
[
µ2
L (vL −wL)−µ2

M (wM − vM)
]

which is greater than v by Inequality A5. ■

We finish by showing that without opacity design, the value of information in games

with two states and n actions is always positive. Before proceeding to the lemma, we

encounter two new pieces of jargon. First, we call the experiment induced by the receiver-

optimal equilibrium at belief µ0 the Null-Optimal Experiment, η : Θ → ∆(M). Second,

the realization of the initial experiment, y, begets a posterior belief µy , and we call the

experiment induced by the receiver-optimal equilibrium at this belief the y-Equilibrium

Experiment, γy : Θ→ ∆(M).

Lemma A.8. In any two state, n action, simple signaling game, the receiver’s payoff is convex

in the prior.

Proof. Recall that we need consider only signaling games that do not admit separating

equilibria since otherwise the result is trivial. Moreover, Lemma A.5 allows us to suppose

that only two messages are used in any equilibrium. There are three cases to consider.

Case 1: For prior µ0, the receiver-optimal equilibrium is one in which the sender pools.

Observe that in this case, the null-optimal experiment is a completely uninformative

experiment, so it is obvious that ex ante information benefits the receiver.
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Case 2: For prior µ0, the receiver-optimal equilibrium is one in which the sender

mixes in one state and chooses a pure strategy in the other. Observe that in this case, the

null-optimal experiment begets two posteriors: one that is in the interior on [0,1] and the

other that is either 0 or 1.

WLOG (the other cases follow analogously) suppose that θH mixes and chooses mes-

sage m1 with probability σ and θL chooses message m1. Following an observation of

message m2, the receiver’s belief is 1 and following message m1 it is µj < µ0.

Consider any initial experiment, ζ, with k ≥ 2 realizations. Observe that for any re-

alization that yields a belief µi ≥ µj , an equilibrium in which θH mixes and θL does not

must also exist, and hence the receiver’s equilibrium payoffs for each of these beliefs must

be bounded below by the payoff for that equilibrium. Suppose that in each case that this

equilibrium is optimal (and hence that the receiver’s payoffs are at their lower bounds).

For each y such that µy ≥ µj , the y-equilibrium experiment is one that sends the poste-

riors to µj and 1. Consequently, it is WLOG to suppose that ζ just has a single experiment

realization that yields a belief above µj . Moreover, any realization of experiment ζ that

yields a posterior µy < µj must beget an equilibrium payoff bounded below by the pooling

payoff. Hence, we suppose that for each such realization y, the optimal equilibrium is the

pooling equilibrium. Moreover, the resulting payoff from this distribution over pooling

payoffs itself is bounded below by the payoff were the initial experiment to have merely

a single signal y that begets a belief below µj . Hence we suppose that is the case.

To summarize, ζ has just two realizations, y1 and y2, corresponding to beliefs µ1 < µj

and µ2 > µj , respectively. γ1 has just one realization, corresponding to belief µ1. γ2

has two realizations, corresponding to beliefs µj and 1. Hence, ξ–the experiment that

corresponds to the information ultimately acquired by the receiver following the initial

learning and the resulting equilibrium play in the signaling game–has three realizations,

corresponding to beliefs µ1,µj and 1. The null-optimal experiment η has two realizations,

corresponding to beliefs µj and 1.

The resulting distribution over posteriors induced by η has support on 1 and µj . Like-

wise, the resulting distribution over posteriors induced by ξ has support on 1, µj and µ1.

Since µ1 < µj , ξ is more (Blackwell) informative than η and so the receiver prefers ξ–the
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receiver prefers learning.

Case 3: For prior µ0, the receiver-optimal equilibrium is one in which the sender

mixes in both states. Observe that in this case, the null-optimal experiment begets two

posteriors, both of which are in the interior of [0,1].

Let the sender in the high state choose a mixed strategy σH and let the sender in the

low state choose a mixed strategy σL. This begets two posteriors, µj > µ0 > µl .

The remainder proceeds in the same way as in the second case, any experiment real-

ization that yields a belief in the interval [µl ,µj] leads to an equilibrium payoff bounded

below by the optimal equilibrium payoff at belief µ0, and any experiment realization that

yields a belief outside that interval leads to an equilibrium payoff bounded below by the

pooling payoff.

Ultimately, the null-optimal experiment, η, is less (Blackwell) informative than ξ (de-

fined as in the first two cases), so learning must always be beneficial.

We have gone through each case, and the result is shown. ■

References

Mark Whitmeyer. Bayesian elicitation. Mimeo, 2019.

13


	Sufficient Conditions for a Positive Value of Information

