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1 Introduction

When economists write models, they typically endow agents with utility functions

that are increasing functions of the agents’ wealths. This is justified by appealing

to free disposal: more wealth should always be weakly preferred to less, as an

agent could always burn any perceived excess. The notion of “more-is-better” also

seems reasonable with respect to information in a decision problem. For a Bayesian

decision-maker this is, indeed, the case; and, as with wealth, a free-disposal argu-

ment provides the justification.

Just as a utility function can be written that is not an increasing function of the

agent’s wealth; however, so too an updating rule–a rule for how to react to new

information–need not satisfy the condition that more information is preferred to

less. With the conservative Bayesianism of Edwards (1968), agents may strictly

prefer less information. Another example is updating rules that exhibit confirma-

tory bias (Rabin and Schrag (1999)). Divisible updating (Cripps (2022)) also may

yield a negative value for information; likewise the α −β model of Grether (1980).

What we discover in this paper is that Bayes’ law is the unique (nontrivial,

continuously distorting) updating rule that satisfies the desideratum of more in-

formation being preferred to less.1 To an expected-utility maximizer faced with

a decision problem, information is valuable. It is known that to such an agent,

Bayes’ law is the optimal way to react to new information, that is, the updating

rule that maximizes the decision-maker’s ex ante expected payoff. We show here

that the rationale for Bayes’ law is even stronger, in fact, is fundamental in the

sense that Bayes’ law is essentially equivalent to the Blackwell order: eschewing

Bayes’ law means violating the Blackwell order. This paper, thus, provides a novel

1There are two natural ways of evaluating the value of information for a decision-maker whose

updating rule is not Bayes’ law: when the decision maker arrives at a belief other than the Bayesian

one and takes an action, i. “apply the mistake twice” and compute the expected payoff using the

non-Bayesian belief; or ii. evaluate the expected payoff using the correct belief. We use the latter.
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justification for imposing Bayesianism in models.

To go into specifics, the exceptional updating rules noted above are examples

of updating rules that (following de Clippel and Zhang (2022)) Systematically Dis-

tort Beliefs, for which there exists a distortion function from the correct Bayesian

posterior to that produced by the updating rule. Restricting attention to such

rules, we show that if an updating rule is such that any experiment is more valu-

able to a decision maker than any garbling (i.e., respects the Blackwell order) when

there are three or more states, corresponds to a continuous distortion function, and

is non-trivial (does not map every Bayesian belief to the same belief), the updat-

ing rule is Bayes’ law. That is, for three or more states, Bayes’ law is the unique

non-trivial updating rule obtained by a continuous distortion that respects the

Blackwell order.

On the other hand, a continuous, nontrivial updating rule that respects the

Blackwell order has more freedom when there are only two states. Such updat-

ing rules must divide the interior of the belief space into at most three (possibly

prior-dependent) intervals. In the central interval, the updating rule is Bayes’ law,

whereas on the outer two intervals, the updating rule is a coarse rule that maps

all beliefs in the region to the inner endpoints. However, if we further impose that

the distortion function is differentiable, Bayes’ law is the lone survivor.

1.1 Related Work

By now there are many papers that explore non-Bayesian updating. One vein of

the literature formulates axioms that produce updating rules other than Bayes’

law. Epstein (2006) studies an agent whose behavior is in the spirit of the prone-

to-temptation agent of Gul and Pesendorfer (2001). Ortoleva (2012) axiomatizes a

model in which an agent does not behave as a perfect Bayesian when confronted

with unexpected news. Of special note is Jakobsen (2019), who introduces a model

of coarse Bayesian updating in which a decision-maker (DM) partitions the belief
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simplex into a collection of convex sets. Every Bayesian belief, then, is understood

by the DM as the representative belief corresponding to the partition element in

which the (correct) Bayesian belief lies.

Jakobsen (2019) presents an example (Example 4) of a coarse Bayesian updater

who, nevertheless, assigns a higher value to more information. We show that this

is a particular case of what we term occasionally coarse updating rules, the unique

family of rules that respect the Blackwell order when there are two states (The-

orem 3.1). His Proposition 7 states precisely when a regular (for which all cells

of the partition have full dimension) coarse Bayesian updating rule respects the

Blackwell order. One implication of our main theorem (Theorem 3.1) is that, for a

fixed prior µ, Bayes’ law and the regular coarse Bayesian updating rule with a sin-

gle element (the entire simplex) are the only (regular) coarse updating rules that

respect the Blackwell order when there are three or more states.

This work is also related to the work on dynamically consistent beliefs–see, e.g.,

Gul and Lantto (1990); Machina and Schmeidler (1992); Border and Segal (1994);

Siniscalchi (2011); and the survey, Machina (1989). Another seminal paper in that

area is Epstein and Le Breton (1993), who show that “dynamically consistent be-

liefs must be Bayesian,” thereby establishing an equivalence (as Bayesian beliefs

are obviously dynamically consistent). Naturally, although dynamically consistent

beliefs must mean that the DM’s updating rule respects the Blackwell order, our

Theorem 3.1 demonstrates that beliefs that respect the Blackwell order need not

be dynamically consistent.

Closely tied to the notion of dynamic consistency is the value of information

for DMs with non-expected-utility preferences. That some experiments may be

harmful to a DM is illustrated in Wakker (1988), Hilton (1990), Safra and Sulganik

(1995), and Hill (2020). Li and Zhou (2016) show that the Blackwell order holds

for almost all DMs with uncertainty-averse preferences provided they can commit

ex ante to actions, and Çelen (2012) establishes that it holds for an MEU DM.
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2 Setup

There is a finite set of states of nature, Θ, with |Θ| = n. ∆ ≡ ∆ (Θ) is the (n− 1)-

simplex, the set of probabilities on Θ. µ ∈ int∆ denotes our decision-maker’s

(DM’s) full-support prior. A statistical experiment is a map π : Θ→ ∆ (S), where S

is a finite set. Denote the set of all experiments with finite support Π.

∆2 ≡ ∆ (∆ (Θ)) denotes the set of distributions over posterior probabilities (pos-

teriors) x ∈ ∆. An Updating Rule, U , is a map

U : ∆×Π→ ∆2

(µ,π) 7→ ρU
,

where ρU ∈ ∆2 is a distribution over posteriors whose support is a subset of ∆.

One notable updating rule is the Bayesian updating rule, UB, which produces the

Bayesian distribution over posteriors, ρB, i.e., (µ,π) 7→UB
ρB.

Corresponding to an updating rule is a mapping from the Bayesian distribution

over posteriors to the distribution over posteriors produced by the updating rule:

Φ : ∆2→ ∆2

ρB 7→ ρ
.

We define this mapping to be such that the following diagram commutes:

∆×Π ∆2

∆2

UB

U
Φ

Following de Clippel and Zhang (2022), we say that an updating rule Systemati-

cally Distorts Beliefs if its corresponding Φ is such that there exists a well-defined

function ϕµ : ∆→ ∆, where

ρB 7→Φ ρ

{x1, . . . ,xk} 7→ {ϕµ (x1) , . . . ,ϕµ (xk)} ,
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(assuming that each xi is distinct) and PρB

(
xj

)
= Pρ

(
ϕµ

(
xj

))
for all j. Throughout,

we restrict attention to updating rules that systematically distort beliefs–which

from now we term Updating Rules. Except when it would create confusion, we

write ϕ, suppressing the dependence on µ.

Given a Bayesian posterior x, the Bayesian DM’s value function is

V (x)Bmax
a∈A

Exu (a,θ) .

Value function V is convex, which implies a positive value of information for a

Bayesian DM. In this paper, we are interested in evaluating the value of informa-

tion for non-Bayesians. To that end, we specify that at every x̂ ∈ ∆,2 the DM’s

choice of action is Consistent: her choice depends only on the realized posterior,

i.e., selection a∗ (x̂) ∈ argmaxa∈AEx̂u (a,θ) is a function of x̂.3

An updating rule, U , Respects the Blackwell Order for Prior µ ∈ int∆ if for any

compact action set A, continuous utility function u : A ×Θ → R, and consistent

choice of action a∗ : ∆ → A, a decision maker’s ex ante expected utility from ob-

serving experiment π is higher than from observing π′ if π ⪰ π′, where ⪰ is the

(Blackwell) partial order over experiments.

For a fixed consistent choice of action and prior µ ∈ int∆, the function W (x)B

Exu (a∗ (ϕ (x)) ,θ) is a well-defined function of the Bayesian belief x. Thus, letting

ρ′B and ρB be the Bayesian distributions over posteriors corresponding to π′ and π,

an updating rule respects the Blackwell order for µ ∈ int∆, if for any compact A,

continuous u : A×Θ→R, consistent a∗ : ∆→ A, and pair π ⪰ π′,

EρBW (x) ≥ Eρ′B
W (x) .

Note that this is is equivalent to W ’s convexity in x. An updating rule Respects the

Blackwell Order if it respects the Blackwell order for all µ ∈ int∆.

2x ∈ ∆ denotes the Bayesian posterior, and x̂ = ϕ (x) ∈ ∆, the possibly non-Bayesian posterior.

3For simplicity, we focus without loss of generality on deterministic decision rules. Note also

that we assume interim optimality: a∗ is a selection from the argmax correspondence at belief ϕ (x).
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2.1 (Brief) Discussion of Assumptions

Applying the mistake once: We are taking a stance on how to compute the value

of information. As noted in the first footnote, there are two plausible ways of eval-

uating a non-Bayesian DM’s value of information. In both cases, the DM’s action

at any belief must be interim-optimal; viz., must maximize her expected utility

given her posterior x̂ = ϕ (x). Thus, from a Bayesian DM’s perspective, the DM

with non-Bayesian belief x̂ , x may make a mistake. But how should we evaluate

this expected payoff, with respect to the Bayesian belief x or x̂?

In the latter case, the DM’s expected utility at the Bayesian posterior x is V (ϕ (x)).

The mistake is made twice, both when the DM chooses her action at belief ϕ(x) but

also when computing the expectation of the action’s payoff. We do not do this but

instead compute the expected payoff to an action with the (correct) Bayesian pos-

terior. Ours is the perspective of a sophisticated DM, who understands that she is

not a perfect Bayesian but will potentially make mistakes at interim beliefs. She

may, therefore, refuse free information, in anticipation of her likely errors. In Ap-

pendix B, we show that when the DM evaluates expected payoffs using ϕ (x), an

updating rule respects the Blackwell order for µ ∈ int∆ if and only if ϕµ is affine.

Consistent Behavior: We are also imposing a sort of posterior-separability of the

DM’s behavior: her behavior at any posterior x̂ ∈ ∆ is described by a function a∗ (x̂).

This is an inconsequential distinction when the DM is Bayesian (and hence does

not make mistakes) but important for non-Bayesians. Our specification prevents

violations of the Blackwell order obtained by having the DM make more innocu-

ous selections from the set of optimal actions at ϕ(x) when the Bayesian x is the

support of a more contracted ρB.

Our definition of respecting the Blackwell order requires that information is

valuable for any consistent choice of action. This stipulation is completely incon-

7



sequential except in our alternate topological proof of Corollary 3.5.4 Other than

for that alternate proof, the results go through if respecting the Blackwell order

for µ is defined as “for some,” or “for a particular (e.g., adversarial, congenial)”

consistent choice of action rather than “for all.” In fact, consistency is not needed

for our necessity results at all.

2.2 Additional Preliminaries

There are two broad classes of errors that a distortion function can produce, ex-

pansive and contractive. An error is Expansive for some (Bayesian) x ∈ ∆ if ϕµ (x)

does not lie on the line segment between x and µ. A distortion function that is such

that there is an expansive error for some x Produces an Expansive Error. An error

is Contractive for some (Bayesian) x ∈ ∆ if ϕµ (x) lies on the line segment between x

and µ (and ϕµ (x) , x). A distortion function that is such that there is a contractive

error for some x Produces a Contractive Error. A distortion function may produce

both expansive and contractive errors. Figure 1 illustrates the two types of error.

A distortion function is Trivial on a subset S ⊆ ∆ if ϕ is constant on S: for all x ∈ S,

ϕ (x) = x∗ for some x∗ ∈ ∆.

Let ℓ (x,y) denote the line segment between x and y for any x,y ∈ ∆ and ℓ◦ (x,y)

denote the line segment between x and y for any x,y ∈ ∆, not including its end-

points:

ℓ (x,y)B
{
x′ ∈ ∆|∃λ ∈ [0,1] : λx+ (1−λ)y = x′

}
, and ℓ◦ (x,y)B ℓ (x,y) /{x,y}.

One special case is when the endpoints of the line segment are µ and some y ∈ ∆.

We denote this ℓy ≡ ℓ (µ,y). Denote the set of m-faces of the (n− 1)-simplex by Sm

(0 ≤m ≤ n− 1):

Sm = {Sm|Sm is an m-face of ∆}.

4Perhaps it is not even needed there, but it makes the proof easier.
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(a) An expansive error (b) A contractive error

Figure 1: Two errors. suppρB are the red dots; µ, the blue x; x̂1, hollow black.

Note that we understand the (n− 1)-face of a simplex to be the simplex itself, and

we denote by E the set of all vertices in a simplex, i.e., E = S0.

Define the sets

ÊB {ei ∈ E| ϕ (ei) , ei} ,

to be the (possibly empty) set of vertices for which ϕ produces an error; and

ŜmB {Sm ∈ Sm| ∃ x ∈ Sm : ϕ (x) , x} ,

Ŝ B ∪mŜm, Ŝ1B ∪m≥1Ŝm and Ŝ2B ∪m≥2Ŝm

to be the (possibly empty) set of faces of ∆, faces of ∆ other than vertices, and

faces of ∆ other than vertices or edges, respectively, containing beliefs for which ϕ

produces an error. Finally, for C ⊆ ∆, intC denotes the relative interior of C.

3 Updating Rules that Respect the Blackwell Order

This section contains the main results of the paper, Theorem 3.1 and Corollaries

3.2 and 3.5; a full characterization of precisely which updating rules respect the
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Blackwell order. §4 sketches the theorem’s proof.

If there are just two states, an updating rule, for a fixed µ ∈ int∆, is Occa-

sionally Coarse if there exist two (one or both of which are possibly empty)

intervals C1B (0, a) and C2B (b,1), with 0 ≤ a ≤ b ≤ 1 such that

1. ϕ (x) = a for all x ∈ C1,

2. ϕ (x) = b for all x ∈ C2,

3. ϕ (x) = x for all x ∈ [a,b], and

4. ϕ (0) ≤ a and ϕ (1) ≥ b.

For a fixed µ, an updating rule that is occasionally coarse has at most two con-

vex regions (intervals) of beliefs on which it collapses any belief to a single belief.

Moreover, there is possibly another convex region, in between these two coarse re-

gions, in which the updating rule is Bayes’ law. The DM may also make mistakes

about beliefs corresponding to certainty but they cannot be too severe.

If there are three or more states, an updating rule, for a fixed µ ∈ int∆, is

Occasionally Stubborn if,

1. For all Sm ∈ Ŝ2, for all m, there exists a common x∗ ∈ ∆ such that ϕ (x) =

x∗ for all x ∈ intSm;

2. If x∗ ∈ intS
′
1 for some S

′
1 ∈ Ŝ1 then either ϕ (x) = x∗ for all x ∈ intS

′
1 or

there exists a vertex of S
′
1, e

′
i such that ϕ (x) = x∗ for all x ∈ ℓ◦ (ei ′,x∗)

and ϕ (x) = x for all x ∈ S ′1 \ ℓ◦ (ei ′,x∗). Moreover, for all S1 ∈ Ŝ1 \
{
S
′
1

}
,

ϕ (x) = x∗ for all x ∈ intS1; and

3. ϕ (ei) ∈ ℓ (x∗, ei) for all ei ∈ Ê.

That is, occasionally stubborn updating rules must either get “every belief cor-

rect” on the relative interior of a (non-vertex, non-edge) face; or must be such that

every belief on the relative interior of that face must be updated to the same belief,
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x∗ (1). Moreover, this belief, x∗, is unique: all beliefs other than the vertices and

possibly a subset of beliefs on one edge must be mapped to x∗ by ϕ (1). If a vertex

is updated incorrectly, there is more freedom: it can be updated to any belief that

is “more extreme” with respect to that vertex than x∗ (3). Finally, there may be a

special case in which the distortion produces an error for beliefs on an edge and

the image belief x∗ also lies on that edge (2). In this event, either i. every belief on

the interior of that edge is mapped to x∗, or ii. only the portion of beliefs between

x∗ and a vertex are, with the remainder updated correctly (2).

Theorem 3.1. If there are two states (n = 2), an updating rule respects the Blackwell

order for µ ∈ int∆ if and only if it is occasionally coarse. If there are three or more states

(n ≥ 3), an updating rule respects the Blackwell order for µ ∈ int∆ if and only if it is

occasionally stubborn.

A corollary of this is

Corollary 3.2. If there are three or more states, if U respects the Blackwell order for

µ ∈ int∆ it is either Bayes’ law or ϕµ is trivial on int∆.

This corollary illustrates an easy test of Blackwell consistency for updating

rules: if for some prior U is not Bayes’ law and full-support posteriors do not

all get interpreted as the same belief, information can have negative value.

Example 3.3 (Occasionally Coarse Rules). There are two states, Θ = {0,1}, and

the set of actions is the unit interval, A = [0,1]. The DM’s utility function is the

standard “quadratic loss” utility, translated up by .3 (to make the graph prettier):

u (a,θ) = − (a−θ)2 + .3. Accordingly, V (x) = −x (1− x) + .3. Figure 2 illustrates the

updating rule on the simplex, the value function V , and function W . Here is an

Interactive Link, where one can adjust the parameters–u,a,b and v that determine

the family of occasionally coarse rules–by moving the corresponding sliders.
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Figure 2: Occasionally Coarse Updating
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(a) Trivial on Edges (b) Trivial on 1.5 Edges

Figure 3: Occasionally Stubborn Updating

Example 3.4 (Occasionally Stubborn Rules). Figure 3 illustrates two occasionally

stubborn updating rules when there are 3 states. In the first (3a), ϕ ((0,0)) =
(

1
5 ,

1
6

)
,

ϕ ((0,1)) =
(

3
10 ,

1
2

)
, ϕ ((1,0)) = (1,0), and ϕ (x) =

(
1
5 ,

1
3

)
for all other x ∈ ∆.

In the second (3b), ϕ ((0,1)) =
(

3
10 ,

7
10

)
, ϕ (x) =

(
1
2 ,

1
2

)
for all x with 0 < x1 <

1
2 and

x2 = 1−x1, ϕ (x) = x for all x with 1
2 ≤ x1 ≤ 1 and x2 = 1−x1 or 0 ≤ x1 ≤ 1 and x2 = 0,

and ϕ (x) =
(

1
2 ,

1
2

)
for all other x ∈ ∆.

An updating rule Continuously Distorts Beliefs if ϕµ is continuous on ∆ for

all µ ∈ int∆. An updating rule Smoothly Distorts Beliefs if ϕµ is continuously

differentiable on int∆ for all µ ∈ int∆. An updating rule is Non-Trivial if ϕµ is not

trivial on ∆ for all µ ∈ int∆. When there are at least three states, as any point on the

boundary ∂∆ is the limit of a sequence of beliefs on the interior of the sequence,

we have the following corollary of Theorem 3.1.

Corollary 3.5. If there are three or more states (n ≥ 3), a non-trivial updating rule that

continuously distorts beliefs respects the Blackwell order if and only if it is Bayes’ law.5

5See Appendix A.1 for an alternate proof suggested by reviewer.
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When there are two states, imposing continuity of each ϕµ refines the occasion-

ally coarse updating rules only slightly. The only difference is that now ϕµ (0) = aµ

and ϕµ (1) = bµ.6 Instead, imposing smoothness is needed to produce Bayes’ law,

as ϕµ (x) = max
{
aµ,min

{
x,bµ

}}
is continuous on [0,1] but not differentiable at aµ

(or bµ) for aµ (bµ) ∈ (0,1).

Corollary 3.6. A non-trivial updating rule that smoothly distorts beliefs respects the

Blackwell order if and only if it is Bayes’ law.

4 Sketch of Theorem 3.1’s Proof

4.1 Expansive Errors

Proposition 4.1. When there are three or more states, if U respects the Blackwell order

for µ ∈ int∆ and ϕ produces an expansive error, ϕ is occasionally stubborn.

In proving Proposition 4.1, we start with the following lemma. We specify that

ρB is a distribution over posteriors with affinely-independent support on k points:

suppρB = {x1, . . . ,xk}.

Lemma 4.2. If U respects the Blackwell order for µ ∈ int∆ and ϕ is expansive for some

xi ∈ suppρB, ϕ is expansive for all Bayesian posteriors x =
∑k

j λjxj , where
∑k

j λj = 1,

λj ∈ [0,1] for all j = 1, . . . , k and λi > 0. Moreover, for all such x, ϕ (x) = x∗.

Here is another way to put this lemma: if distortion ϕ is expansive for a point

xi in support of ρB, ϕ must be expansive for any point within the convex hull of the

support of ρB, other than those obtained by taking convex combinations of points

other than xi . Moreover, these points must all be mapped to the same x∗ by ϕ.

Proof. We sketch the proof here, leaving the details to Appendix A.2.

6aµ and bµ have subscripts to indicate that they may be different for different priors.
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Step 1 (“Bringing the Error Point In”): We start with some belief x1, for which ϕ

has an expansive error, and some ρB (with affinely independent support) of which

x1 is a support point. We construct two new distributions ρ′B and ρ′′B, by keeping

all of the support points of ρB the same except for the 1st. That support point, x′1,

for ρ′B, instead, lies within the convex hull of ρB’s support (and is not x1), i.e., it is

“brought in.” Accordingly, by construction ρ′B is a strict MPC of ρB. We do likewise

with ρ′′B, “bringing the 1st point in support of ρ′B in” in the same direction on which

x1 was brought in, i.e., x1, x′1 and x′′1 are collinear.

Step 2 (“Banishing the New Points”): Next, we argue (in Claim A.3) that ϕ must

also produce an expansive error for the new points x′1 and x′′1 . In fact, ϕ
(
x′1

)
≡ x̂′1

and ϕ
(
x′′1

)
≡ x̂′′1 must lie outside of the convex hull of ρB’s support. We argue by

contraposition: if one did not, we could find a decision problem for which the

value of information is strictly negative.

Step 3 (“If Distinct then More Contracted ⇒ More Extreme”): Our third step is

to argue (in Claim A.4) that if x̂′1 , x̂′′1 , x̂′′1 must be “more extreme” than x̂′1 in

the sense that it must lie outside of the convex hull of suppρ′B ∪
{
x̂′1

}
. Again we

argue by contraposition: we construct a decision problem in which a strictly less

informative experiment is strictly better.

Figure 4 illustrates steps 1 through 3. In 4a, x1 is in red, x′1 in purple, x′′1 green,

and the prior is the blue cross. x̂1 is the hollow black point. 4b depicts how if x̂′1

(hollow purple) lies within ρB’s support, we can find a value function for which

the DM strictly prefers ρ′B to ρB. Similarly, 4c shows how x̂′′1 (hollow green) must

be “more extreme” than x̂′1.

Step 4 (“All Meet the Same End”): Next, we argue (in Claim A.5) that, in fact,

x̂′1 and x̂′′1 are not distinct. They are same point x̂∗1. Contraposition is again our

approach, but now the proof is a little more subtle: we compare a convex combi-

nation of ρB and ρ′′B with its strict MPC, ρ′B, and show that unless the destinations

of x′1 and x′′1 are the same, we can find a decision problem for which ρ′B is strictly

15



(a) Step 1 (b) Step 2

(c) Step 3

Figure 4: First steps of Lemma 4.2’s proof
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preferred.

Step 5 (“Repeating Steps 1-4”): We now repeat the first four steps, with the modifi-

cation that now we “bring in” some support point of ρB, xt, other than x1, i.e., with

respect to which ϕ may not produce an expansive error. As in Step 1, we construct

two new MPCs, keeping all points except for the tth unchanged, and such that the

new points, x∆t and x∆∆t , and xt, itself, are collinear. Then, we argue that ϕ must

produce expansive errors for these new points and map them to the same point.

Step 6 (“Filling in a Small Gap”): The proof is almost done, but there is a small

gap left to be filled. We need to show that i) the points obtained by “bringing

in the error point in” and “bringing non-error points in” are mapped to the same

point; and ii) the points at which the “bringing in the error point in” and “bringing

non-error points in” processes meet are also mapped to the same point, x∗. ■

The next result allows us to move from δµ to the environment of Lemma 4.2.

Lemma 4.3. If U respects the Blackwell order for µ ∈ int∆ and ϕ (µ) , µ, then there

must be another x , µ with respect to which ϕ produces an expansive error.

4.1.1 Two States

The next result anticipates our full treatment of contractive errors in §4.2. It is

useful to have this lemma here, as we appeal to it in the proof of Lemma 4.5.

Lemma 4.4. Let n = 2, and suppose ϕ produces a contractive error for some x > µ and

U respects the Blackwell order for µ ∈ int∆. Then, there exists x∗ ∈ [µ,x) such that for

all y ∈ [x∗,1), ϕ (y) = x∗. The mirrored statement holds if x < µ.

This lemma is similar to Steps 2, 3 and 4, above. In short, we argue that if U

respects the Blackwell order for µ ∈ int∆, if one moves toward the prior from a

posterior, x, for which ϕ has a contractive error, ϕ must also have a contractive

error for these new points, which must all be mapped to the same incorrect belief,

17



x∗. In fact, all points that are more extreme than x∗, except for 1, including those

that are more extreme than x we started with, must be mapped to x∗.

Lemma 4.5. Let the number of states n = 2. If U respects the Blackwell order for

µ ∈ int∆ and ϕ produces an expansive error for some x′ ∈ (µ,1), ϕ (x) = x∗ > x′ for

all x ∈ (0,x∗). Moreover, there exist two intervals (one of which is possibly empty)

I1B [x∗, x̄) and I2B [x̄,1) (x∗ ≤ x̄ < 1), with ϕ (x) = x for all x ∈ I1 and ϕ (x) = x̄ for all

x ∈ I2. The mirrored statement holds if x′ ∈ (0,µ), instead.

4.2 Contractive Errors

Proposition 4.6. When there are three or more states, if U respects the Blackwell or-

der for µ ∈ int∆ and ϕ produces a contractive error but not an expansive error, ϕ is

occasionally stubborn.

To prove the proposition, our first pair of observations are the easy facts that if

U respects the Blackwell order for µ ∈ int∆ and ϕ does not produce an expansive

error, ϕ (µ) = µ and ϕ (x) ∈ ℓx (the line segment between x and µ) for all x. From

these properties and Lemma 4.4,

Corollary 4.7. Suppose U respects the Blackwell order for µ ∈ int∆ and ϕ produces a

contractive error for some x1 ∈ ∆ but not an expansive error. Writing ϕ (x1)C x̂1 , x1,

there exists an x∗1 ∈ ℓx̂1
such that for all x′ ∈ ℓ◦

(
x∗1,x1

)
, ϕ (x′) = x∗1.

We follow this result with an analog of Lemma 4.2. ρB is a distribution over

posteriors with affinely-independent support on k points: suppρB = {x1, . . . ,xk}.

Lemma 4.8. Suppose U respects the Blackwell order for µ ∈ int∆ and ϕ produces a

contractive error for some x1 suppρB but not an expansive error. Then ϕ produces a

contractive error for all x =
∑k

j=1λjxj , where
∑k

j λj = 1, λj ∈ [0,1] for all j = 1, . . . , k

and λ1 > 0. Moreover, for all such x, ϕ (x) = µ.
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Proof. We sketch the proof here, leaving the proof to Appendix A.7.

Step 1 (“Moving Along the Edge”): We start with some belief x1, for which ϕ has an

contractive error, and some ρB (with affinely independent support) of which x1 is

a support point. We construct a new distribution ρ′B, by keeping all of the support

points of ρB the same except for the first, which we “bring in” along an arbitrary

one of the edges. We show that ϕ
(
x′1

)
= µ for any such new x′1 or else we could

find a decision problem where ρ′B is strictly preferred to ρB. We then do a similar

procedure for new distributions ρ†B, which are constructed from ρB by keeping all

but the sth point (s , 1) the same, and “bringing” the sth point in along the edge

connecting it and x1. All such points must be mapped to µ by ϕ.

Step 2 (“Face Points Mapped to the Prior”): Our final step is to fill in the remaining

faces of the simplex that is the convex hull of suppρB, ∆ρB . We do this starting

with the edges tackled in step 1, taking convex combinations of points on those

edges to obtain points on the interior of the 2-dimensional faces of ∆ρB that have

x1 as a vertex. All such points must be mapped to µ by ϕ. Then we take convex

combinations of points on those 2-d faces of ∆ρB to obtain points on the interior of

the 3-d faces of ∆ρB that have x1 as a vertex. This process continues until we fill in

int∆ρB itself, completing the proof. ■

We can now prove the proposition.

Proof of Proposition 4.6. Let ϕ produce a contractive error for some xa ∈ Sm but not

an expansive error for any x ∈ Sm. Fix an arbitrary x ∈ intSt where St (t ≥ m) is a

face of ∆ and where Sm is a face of St.

Case 1: x < int∆. Any such x lies in the relative interior of the convex hull

of k (≤ t) affinely independent points, {x1, . . . ,xk} that lie in St, one of which is xa.

Pick some x′ ∈ intconv {x1, . . . ,xk} and some y ∈ ∂∆ with µ = λy + (1−λ)x′ for some

λ ∈ (0,1). Accordingly, µ ∈ intconv {x1, . . . ,xk , y}. Setting suppρB = {x1, . . . ,xk , y}, by

Lemma 4.8, ϕ (x) = µ.
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(a) Step 1 (b) Step 2

Figure 5: Lemma 4.8 Proof

Case 2: x ∈ int∆. If there exists a collection of 3 ≤ k ≤ n affinely independent

points, one of which is xa such that x and µ lie in the relative interior of their

convex hull, we are done. Suppose instead there does not exist such a collection.

However, we can then pick a distribution ρB with support on 3 ≤ k ≤ n affinely

independent points, one of which is xa, then a distribution ρ′B with support with

3 ≤ k ≤ n affinely independent points with some x′ ∈ intρB in support and x ∈

intconvsuppρ′B. By Lemma 4.8, ϕ (x) = µ.

Claim A.15 disciplines where ϕ can map the vertices, completing the proof. ■

4.2.1 Two States

Having already proved Lemma 4.4–which specifies that when there are just two

states, distortions that produce contractive errors for some belief must map all

beliefs (other than the most extreme belief, the vertex) more extreme than the

incorrectly mapped one to the same incorrect x∗ (in a contractive manner)–there is

nothing left to do. An immediate consequence of the lemma is
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Lemma 4.9. Let the number of states n = 2. If U respects the Blackwell order for

µ ∈ int∆, and ϕ produces a contractive error for some x′ ∈ (µ,1] but does not produce

an expansive error, then ϕ (x) = x∗ ∈ [µ,x′) for all x ∈ [x∗,1). Moreover, ϕ (x) = x for all

x ∈ [µ,x∗] and ϕ (1) ≥ x∗.

When there are just two states, like when there are expansive errors, updating

rules that respect the Blackwell order must be coarse. In contrast to the expansive-

error case, errors cannot be extreme: signal realizations that lead to Bayesian be-

liefs more confident about one state (than under the prior), must still yield beliefs

more confident about that state under the non-Bayesian rule.

4.3 Finishing Theorem 3.1’s Proof

Proof of Theorem 3.1. First, let n = 2. Necessity follows from Lemmas 4.5 and 4.9

and Claim A.15. For sufficiency, by construction (denoting ϕ (0) = u and ϕ (1) = v),

W (x) =



αx+ β, if x = 0

σx+ η, if 0 < x ≤ a

V (x) , if a < x < b

γx+ δ, if b ≤ x < 1

τx+ ρ, if x = 1,

where αy + β ≥ σy + η for all y ≤ u, σa+ η = V (a), σ ≤ V ′ (a−) (left derivative of V

at a), V (b) = γb + δ, γ ≥ V ′ (b+) (right derivative of V at b), τy + ρ ≥ γy + δ for all

y ≥ v, and V (x) is convex.

Second, let n ≥ 3. Necessity is a consequence of Propositions 4.1 and 4.6. For

sufficiency, we determine W (x). Observe that, letting s denote the vector parallel

to line-segment ℓ◦(x∗, e∗i ) in the direction of x∗ from e∗i , Ds (f (x)) the directional

derivative in the direction of x∗ from e∗i of function f at x along s and Ds (f (x−)) the

directional derivative in the direction of x∗ from e∗i of function f at x along s,
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(i) W (x) = α · x+ β for all x ∈ intSm, for all Sm ∈ Ŝ2, where V (x∗) = α · x∗ + β.

(ii) If x∗ < intS1 for some S1 ∈ Ŝ1, W (x) = α ·x+β for all x ∈ intS1, for all S1 ∈ Ŝ1.

(iii) If x∗ ∈ intS ′1 for some S ′1 ∈ Ŝ1, either

(a) W (x) = α · x + β for all x ∈ ℓ◦(x∗, e∗i ), for some e∗i of S ′1, W (x) = V (x) ≥

α · x+ β for all x ∈ intS ′1 \ ℓ◦(x∗, e
∗
i ), and Ds (V (x∗−)) ≥Ds (α · x∗ + β); or

(b) W (x) = α · x+ β for all x ∈ intS ′1.

(iv) For all x ∈ Sm, for all Sm < Ŝ, W (x) = V (x) ≥ α · x+ β.

(v) For all ei ∈ Ê, W (ei) ≥ α · ei + β, as for a Bayesian, the regions of beliefs on

which actions are optimal are convex.

Thus, W is convex. ■

5 Some Final Remarks

One could generalize the definition of an updating rule to where it is now a map

U : ∆ ×Π ×U (A,Θ)→ R, where U (A,Θ) is a finite set of compact-action decision

problems. That is, the updating rule could adapt to the decision problem itself. In

this case, our approach would not work; in fact, there are other such updating rules

(that systematically distort beliefs) that respect the Blackwell order. For example,

any updating rule that makes errors only when they keep optimal actions that a

Bayesian agent would take renders the value of information positive.

5.1 Updating Rules that Do Not Systematically Distort Beliefs

Although many updating rules in the literature systematically distort beliefs, not

all do, including some realistic ones. As noted by de Clippel and Zhang (2022),

updating rules that correspond to information aggregation failures or correlation

neglect for multiple signals may not systematically distort beliefs. What can we

say about these rules?

Not much. Obviously, our sufficiency result continues to hold, but our necessity
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result does not. For instance, an updating rule that is Bayes’ law for any experi-

ment except a completely uninformative experiment, in which case it produces

some posterior other than µ with probability one, respects the Blackwell order for

µ. Some insights do carry over; however, like the fact that updating rules with

errors that produce more “extreme” beliefs than Bayes’ law must do so for all less

informative experiments. Mirroring Claim A.3,

Remark 5.1. Let experiments π and π′ correspond to ρB and ρ′B, respectively;

and let π ⪰ π′. If U respects the Blackwell order for µ ∈ int∆ and is such that

convsuppΦ (ρB) ⊈ convsuppρB, then convsuppΦ
(
ρ′B

)
⊈ convsuppρB.

A Omitted Proofs

A.1 Direct Proof of Corollary 3.5

I’m grateful to an anonymous referee for sketching this approach. We shall prove

the following, which implies the corollary:

Proposition A.1. Let there be three or more states (n ≥ 3). If U respects the Blackwell

order for µ ∈ int∆ and ϕ is continuous on ∆, either ϕ (x) = x∗ for some x∗ ∈ ∆, for

all x ∈ ∆ or ϕ (x) = x for all x ∈ ∆. Let there be two states (n = 2). If U respects the

Blackwell order for µ ∈ int∆ and ϕ is continuous on ∆, U is occasionally coarse with

ϕ (0) = a and ϕ (1) = b.

Recall that for a fixed consistent choice of action a∗ : ∆→ A and prior µ ∈ int∆,

we define W (x)B Exu (a∗ (ϕ (x)) ,θ).

Proof. Fix µ ∈ int∆ and let U respect the Blackwell order for µ. (∆,∥·∥E) is a metric

space, where ∆ ⊂R
n−1 and ∥·∥E is the Euclidean metric. Let ϕ be continuous on ∆.

Denote by ∆◦ the (topological) interior of ∆, and suppose there exists some

x ∈ ∆◦ for which ϕ (x) = y , x.
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Claim A.2. There exists an ε > 0 such that for all x′ ∈ Bε(x), ϕ (x′) = y.

Proof. Suppose for the sake of contradiction not. Then there exists a sequence {xn}

in ∆ that converges to x and such that ynB ϕ (xn) , y for all n ∈N.

Consider a two-action decision problem in which the payoff to action 1 is 0

and the payoff to action 2 is αw − β, where α and β are such that αy − β = 0 and

αx−β < 0. We must have i. αyn−β ≥ 0 for infinitely many members of the sequence

{yn}; or ii. αyn − β < 0 for infinitely many members of the sequence {yn}.

i. In the first case, by construction, there is a subsequence
{
ynk

}
such that αynk −

β ≥ 0 for all ynk . We impose for all such beliefs, the DM takes action 2 and for

belief y, the DM takes action 1. As xn→ x, xnk → x, so

lim
nk→∞

W
(
xnk

)
= lim

nk→∞
αxnk − β = αx − β < 0 = W (x).

ii. In the second case, by construction, there is a subsequence
{
ynk

}
such that

αynk − β < 0 for all ynk , so for all such beliefs, the DM takes action 1. Accordingly,

W (xnk ) = 0 for all xnk . We impose for belief y, the DM takes action 2, so

lim
nk→∞

W
(
xnk

)
= 0 > αx − β = W (x).

In both cases, W is discontinuous at x and, therefore, non-convex, contradicting

that U respects the Blackwell order for µ. ■

This claim implies that either ϕ−1 (y) is open in (∆◦,∥·∥E) or is the union of an

open set with y itself (in the event where ϕ (y) = y as well). By the continuity

of ϕ, ϕ−1 (y) is closed in (∆◦,∥·∥E). As ∆◦ is connected, if there are three or more

states ϕ−1(y) = ∆◦, so by continuity ϕ is trivial on ∆. If n = 2, either ϕ−1(y) = (0,1),

ϕ−1(y) = (0, a], or ϕ−1(y) = [b,1). Accordingly, by continuity of ϕ, U is occasionally

coarse, ϕ (0) = a, and ϕ (1) = b. ■
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A.2 Lemma 4.2 Proof

Proof. Step 1 (“Bringing the Error Point In”): Fix µ and π that yield ρB with k

affinely independent points of support {x1, . . . ,xk} (k ∈ N, 2 ≤ k ≤ n), and let ϕ

produce an expansive error for x1 ∈ suppρB. WLOG ϕ (x1) = x̂1 < convsuppρB. Let

p ≡ p1 ∈ (0,1) denote PρB (x1); and let pj ∈ (0,1) denote PρB

(
xj

)
and x̂j B ϕ

(
xj

)
for

all j , 1.

Consider first two additional Bayesian distributions over posteriors. The first,

ρ′B, corresponding to experiment π′, has support on a subset of
{
x′1,x2, . . .xk

}
; that

is, all of the support points except for the first one are also support points of ρB.

Moreover, let x′1 ∈ convsuppρB \
{
x′1

}
, so that ρ′B is a strict Mean-Preserving Con-

traction (MPC) of ρB. Let q ∈ (0,1) denote Pρ′B

(
x′1

)
. Let qj ∈ (0,1) denote Pρ′B

(
xj

)
for all j , 1. Note that q > p and qj ≤ pj for all j , 1, with at least one inequality

strict.

The second, ρ′′B, corresponding to experiment π′′, has support on a subset of{
x′′1 ,x2, . . .xk

}
; i.e., all but the 1st support point are also in support of ρ′B. Moreover,

let x′1 = γx1 + (1−γ)x′′1 for some γ ∈ (0,1), so that this distribution is a strict MPC

of ρ′B (and therefore also of ρB) and so that x1, x′1 and x′′1 are collinear. Let r ∈ (0,1)

denote Pρ′′B

(
x′′1

)
. Let rj ∈ (0,1) denote Pρ′′B

(
xj

)
for all j , 1. Note that r > q and rj ≤

qj for all j , 1, with at least one inequality strict. Let x̂′1B ϕ
(
x′1

)
and x̂′′1 B ϕ

(
x′′1

)
.

ClaimA.3. Step 2 (“Banishing the New Points”): x̂′1 < convsuppρB and x̂
′′
1 < convsuppρB.

Proof. Suppose for the sake of contraposition that x̂′1 ∈ convsuppρB. As x̂1 <

convsuppρB,
{
x̂′1

}
∪convsuppρB, (which equals convsuppρB) and x̂1 can be strictly

separated by some hyperplane

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG we may assume convsuppρB is a strict subset of the closed half-space{
x ∈ R

n−1
∣∣∣α · x ≤ β

}
. Consider the value function V (x) = max {0,α · x − β}. Define
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the sets

AB
{
xj ∈ {x2, . . . , xk}|α · x̂j > β

}
and BB

{
xj ∈ {x2, . . . , xk}|α · x̂j ≤ β

}
.

We may relabel the points so that the first l xs lie in A, the last (k − 1− l) xs lie in

B. The DM’s respective payoffs under experiment π and π′ are

l∑
j=2

pj
(
α · xj − β

)
+ p (α · x1 − β) and

l∑
j=2

qj
(
α · xj − β

)
.

Taking the difference of these two expressions, we obtain

l∑
j=2

(
pj − qj

)
︸   ︷︷   ︸
≥0

(
α · xj − β

)
︸      ︷︷      ︸

<0

+p (α · x1 − β)︸        ︷︷        ︸
<0

< 0.

We have obtained a violation of Blackwell’s theorem. ■

Claim A.4. Step 3 (“If Distinct, then More Contracted ⇒ More Extreme Errors”): If

x̂′1 , x̂
′′
1 , there exists a hyperplane that strictly separates x̂

′′
1 and conv

({
x̂′1

}
∪ suppρ′B

)
.

Proof. Suppose for the sake of contraposition that there does not exist a hyper-

plane that strictly separates x̂′′1 and conv
({
x̂′1

}
∪ suppρ′B

)
. This implies, via the

strict separating hyperplane theorem, that x̂′′1 ∈ conv
({
x̂′1

}
∪ suppρ′B

)
, since the lat-

ter set is by construction compact and convex. By Claim A.3, neither x̂′1 nor x̂′′1

lie in convsuppρ′B (as suppρ′B ⊆ suppρB). Accordingly, x̂′1 < conv
({
x̂′′1

}
∪ suppρ′B

)
.

Thus, by the strict separating hyperplane theorem, there exists an (n − 2 dimen-

sional) hyperplane that strictly separates x̂′1 and conv
({
x̂′′1

}
∪ suppρ′B

)
. From here,

the proof replicates that of Claim A.3. ■

Claim A.5. Step 4 (“All Meet the Same End”): x̂′i = x̂′′i C x̂∗i

Proof. Suppose for the sake of contraposition not. Consider a third experiment π†

that produces a correct distribution over posteriors ρ†B with support on a subset of{
x1, . . . ,xi−1,xi ,x

′′
i ,xi+1, . . .xk

}
,
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where P

(
xj

)
= qj for all j , i and the probabilities of x′′i and xi are precisely

such that ρ′B is a strict mean-preserving contraction of this distribution. By Claim

A.4, there exists a hyperplane that strictly separates x̂′′i and conv
({
x̂′i
}
∪ suppρ′B

)
,

Hγ,δ B
{
x ∈ R

n−1
∣∣∣γ · x = δ

}
, where conv

({
x̂′i
}
∪ suppρ′B

)
is a strict subset of the closed

half-space
{
x ∈ R

n−1
∣∣∣γ · x ≤ δ

}
. For value function V (x) = max {0,γ · x − δ}, the dif-

ference in payoffs for the DM from experiments π′ and π† is strictly negative, a

violation. ■

Step 5 (“Repeating Steps 1-4”): Consider second two additional Bayesian dis-

tributions over posteriors ρ△B and ρ△△B , corresponding to experiments π△ and π△△,

respectively. The first has support on a subset of
{
x1, . . . ,xt−1,x

△
t ,xt+1, . . .xk

}
, where

t ∈ {2, . . . , k}. Again, all but one of the support points are also in support ρB, but

now the support point we are changing is not the 1st. Moreover, let

x△t ∈ convsuppρB \ (conv(suppρB \ {x1})∪ {xt}) ,

i.e., x△t is neither xt nor a convex combination of exclusively points in the support

of ρB other than x1. ρ△B is a strict MPC of ρB. Let sj ∈ (0,1) denote Pρ△B

(
xj

)
for all j.

Note that st > pt, s ≡ s1 < p1 ≡ p, and sj ≤ pj for all j , t,1.

The second has support on a subset of
{
x1, . . . ,xt−1,x

△△
t ,xt+1, . . .xk

}
, where t ∈

{2, . . . , k}. Yet again, all but one of the support points also support ρB. Moreover, let

x△△t ∈ convsuppρ△B \
(
conv

(
suppρ△B \ {x1}

)
∪

{
x△t

})
,

i.e., x△△t is neither x△t nor a convex combination of exclusively points in the support

of ρ△B other than x1. Let x△t = γxt + (1−γ)x△△t for some γ ∈ (0,1) so that x△t , x△△,

and xt are collinear. This distribution is a strict MPC of ρ△B (and therefore also of

ρB). Let uj ∈ (0,1) denote Pρ△△B

(
xj

)
for all j. Note that ut > st, u ≡ u1 < si ≡ s, and

uj ≤ sj for all j , t,1. Let x̂△t B ϕ
(
x△t

)
and x̂△△t B ϕ

(
x△△t

)
.

We have the following three claims, the proofs for which mirror (mutatis mu-

tandis) those for Claims A.3, A.4, and A.5, respectively, and so are omitted.
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Claim A.6. x̂△t < convsuppρB and x̂△△t < convsuppρB.

Claim A.7. If x̂△t , x̂△△t , there exists a hyperplane that strictly separates x̂△△t and

conv
({
x̂△t

}
∪ suppρ△B

)
.

Claim A.8. x̂△t = x̂△△t C x̂∗t .

The final step is to fill in a small gap.

Claim A.9. Step 6 (“Filling in a Small Gap”): Let ϕ produce expansive errors for dis-

tinct x,y ∈ ∆. If

ϕ (λx+ (1−λ)y) = ŷ ∀ λ ∈ [0,λ∗) (λ∗ ∈ (0,1)) and ϕ (λx+ (1−λ)y) = x̂ ∀ λ ∈ (λ∗,1] ,

x̂ = ŷ = ϕ (λx+ (1−λ)y) for all λ ∈ [0,1].

Proof. WLOG x, y, and µ are collinear. First, we show that x̂ = ŷ. Suppose not. Evi-

dently, conv {x̂,x,y} and {ŷ} can be strictly separated by a hyperplane or conv {ŷ,x,y}

and {x̂} can be strictly separated by a hyperplane. WLOG we assume the former.

Let such a strictly separating hyperplane be

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG we specify that conv {x̂,x,y} is a strict subset of
{
x ∈ R

n−1
∣∣∣α · x ≤ β

}
. Con-

sider the value function V (x) = max {0,α · x − β} and two distributions ρB and ρ′B

with support on {x,y} and {x′, y} where x′ = λx + (1−λ)y for some λ ∈ [1− ε,1),

where ε > 0 is small. Let p B PρB (y) and p′ B Pρ′B
(y) and observe that p′ < p. By

construction, ρ′B is a strict MPC of ρB. However, the DM’s payoff under the former

is p′ (α · y − β) > p (α · y − β), her payoff under the latter, so by contraposition, x̂ = ŷ.

Finally, define x◦ B λ∗x + (1−λ∗)y. We want to show that x̂ = ϕ (x◦) C x̂◦.

Otherwise, we could construct three distributions ρB, with support on {x,x◦, y}; ρ′B,

with support on {x′, y′}, where x′ ∈ (x,x◦) and y′ ∈ (x◦, y); and ρ′′B, which either has

support on {x◦, y′′} where y′′ ∈ (x◦, y′) or is δx◦ . By construction ρ′′B is a strict MPC

of ρ′B, which is a strict MPC of ρB. Following the previous paragraph’s approach, it
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is apparent that if x̂◦ , x̂ either ρ′ is strictly preferred to ρ or ρ′′ is strictly preferred

to ρ′, which establishes the result by contraposition. ■

This concludes the proof of the lemma. ■

A.3 Lemma 4.3 Proof

Proof. Let x1,x2 ∈ ∆ be such that µ = λx1+(1−λ)x2 for some λ ∈ (0,1) and such that

ϕ (µ) < conv {x1,x2}. Let ρB have support {x1,x2}. If ϕ produces an expansive error

for x1 or x2, we are done. Otherwise, consider instead ρ′B = γρB+(1−γ)δµ for some

γ ∈ (0,1) and MPC of ρ′B, ρ′′B, with support on {x3,x4} where x3 = τx1 + (1− τ)µ and

x4 = ιx2 + (1− ι)µ, for some appropriately chosen τ, ι ∈ (0,1). If ϕ is not expansive

for either x3 or x4, the value of information is not positive, which proves the result

by contraposition. ■

A.4 Lemma 4.4 Proof

Proof. Consider ρB, corresponding to π with suppρB = {0, z} (z ∈ (µ,1]), where z >

ϕ (z) = ẑ ≥ µ. Also consider ρ′B, corresponding to π′, with support {0, z′} with z′ ∈

(ẑ, z). Let p B Pρ′B
(z′). Evidently, we cannot have ẑ′ B ϕ (z′) > ẑ or else value

function V (x) B max
{
0,x − ẑ′+ẑ

2

}
illustrates that U does not respect the Blackwell

order for µ ∈ int∆.

Following the same logic, for ρ′′B with support {0, z′′} with z′′ ∈ (ẑ′, z′), we must

have ẑ′′ B ϕ (z′′) ≤ ẑ′. Suppose for the sake of contraposition that ẑ′′ < ẑ′. Consider

the ternary distribution with support {0, z′′, z}, ρmB , corresponding to experiment

πm, with PρmB
(0) = 1 − p. Observe that ρ′B is a strict MPC of ρmB . Consider value

function V (x) B max
{
0,x − ẑ′+ẑ′′

2

}
. After some algebra, we see that π′ is strictly

superior to πm under U if and only if

p
z′ − z′′

z − z′′

(
z − ẑ′ + ẑ′′

2

)
< p

(
z′ − ẑ′ + ẑ′′

2

)
⇔ z′′ − ẑ′ + ẑ′′

2
> 0,
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which holds as z′′ > ẑ′ > ẑ′′.

Accordingly, U does not respect the Blackwell order for µ ∈ int∆ and so we

must have ẑ′ = ẑ′′. Thus, we must have ϕ (x) = x∗ ≥ µ for all x ∈ (x∗, z).

If z = 1, we are done. Suppose now that z < 1. Suppose there exists some

y ∈ (z,1) with ŷ B ϕ (y) > x∗. Evidently, for all y′ ∈ (y,1), ŷ B ϕ (y′) ≥ ŷ or else

we could construct a value function for which information has strictly negative

value under U . Consider ρB, corresponding to π with support {0, z − ε,y′}, with

ε ∈ (0, z − x∗); and ρ′B, corresponding to π′ with support {0, y}. Let 1− pB PρB (0) =

Pρ′B
(0), pB Pρ′B

(y), qB PρB (y′), and p−qB PρB (z − ε), with (p − q) (z − ε)+qy′ = py.

For value function V (x) = max
{
0,x − min{z−ε,ŷ}+x∗

2

}
the DM strictly prefers π′ to

π under U if and only if

p

(
y −

min {z − ε, ŷ}+ x∗

2

)
> q

(
y′ −

min {z − ε, ŷ}+ x∗

2

)
,

which holds if and only if

z − ε >
min {z − ε, ŷ}+ x∗

2
,

which holds by assumption, yielding a strictly negative value for information. ■

A.5 Lemma 4.5 Proof

Proof. WLOG x′ ∈ (µ,1). By assumption ϕ (x′) C x̂′ > x′ By Lemma 4.2, for all

x ∈ (0,x′), ϕ (x) = x∗, where x∗ ≥ x̂′ > x′.

Claim A.10. ϕ (x∗)C x̂∗ = x∗.

Proof. If x̂∗ > x∗, then by Lemma 4.2, if U respects the Blackwell order for µ ∈ int∆,

ϕ (x′) ≥ x̂∗, a contradiction.

Next, suppose for the sake of contraposition that x̂∗ < x∗. Figure 6 illustrates

this proof. Observe that i) x̂∗ ≥ x′ and ii) for all z ∈ (x̂∗,x∗), ϕ (z) C ẑ ≤ x̂∗ (or

else we could generate a strictly negative value of information). However, then
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consider two experiments, ρB, with support on
{
0, x

′+µ
2 ,x∗

}
with p B PρB (x∗) and

qB PρB

(
x′+µ

2

)
; and ρ′B with support on

{
0, x̂

∗+x∗
2

}
, where

(p+ q)
x̂∗ + x∗

2
= px∗ + q

x′ +µ

2
.

Then, consider value function

V (x) = max

0,x −
x̂∗+x∗

2 + x∗

2

 ,

which reveals that ρ′B (which yields a payoff of 0 to the DM under U , ignoring the

payoff from 0 as it will cancel out) is strictly preferred by the DM to ρB (which

yields a strictly negative payoff to the DM). ■

Claim A.11. ϕ (x) = x∗ for all x ∈ [x′,x∗].

Proof. Figure 7 illustrates this proof. Evidently, we must have ϕ (x) ≤ x∗ for all

x ∈ [x′,x∗]. Suppose for some z ∈ [x′,x∗) ϕ (z)C ẑ < x∗. Consider ρB, corresponding

to π, with support on
{
0,µ,x∗

}
(with respective probabilities 1− p, p − q and q) and

ρ′B, corresponding to π′, with support on {0, z} (with respective probabilities 1− p

and p) and where we must have pz = (p − q)µ+ qx∗. Then for value function

V (x) = max
{

0,x − max {ẑ, z}+ x∗

2

}
,

the DM’s payoff from π′ is strictly higher than that from π under U if and only if

0 > q

(
x∗ − max {ẑ, z}+ x∗

2

)
+ (p − q)

(
µ− max {ẑ, z}+ x∗

2

)
,

which holds if and only if
max {ẑ, z}+ x∗

2
> z,

which is true by assumption. By contraposition we obtain the result. ■
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Figure 6: Claim A.10 proof
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Figure 7: Claim A.11 proof
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Evidently, ϕ (y)C ŷ ≥ x∗ for all y ∈ (x∗,1] or else we could get a strictly negative

value for information. Moreover, if ŷ > y for some y ∈ (x∗,1), that would imply

x̂∗ ≥ ŷ > x∗, a contradiction. Thus, ŷ ≤ y for all y ∈ [x∗,1]. Finally, if ŷ < y for some

y ∈ (x∗,1), then Lemma 4.4 implies there exists some x̄ ∈ [x∗, y) such that ϕ (x) = x̄

for all x ∈ [x̄,1). ■

A.6 Finishing the Proof of Proposition 4.1

Proof. Our first step is to show that we may, without loss of generality, focus on

errors produced by the updating rule for non-vertex beliefs.

ClaimA.12. IfU respects the Blackwell order for µ ∈ int∆ andϕ produces an expansive

error for some vertex ei , ϕ produces an expansive error for some x on the relative interior

of every face Sm for which ei is also a vertex.

Proof. Fix some ei for which ϕ produces an expansive error and pick an arbi-

trary face of ∆, Sm, that has ei as a vertex. By the definition of an expansive er-

ror, êi B ϕ (ei) < ℓei , the line segment between ei and µ. If the face Sm = ∆, we

can construct the binary distribution, ρB, with support {ei ,x2}, where x2 is such

that µ = λx2 + (1−λ)ei for some λ ∈ (0,1). For any λ that is sufficiently close

to 1, êi < convsuppρB. By Lemma 4.2, ϕ produces an expansive error for all

x ∈ intconvsuppρB, which includes some x ∈ int∆.

If the face Sm , ∆ then we construct the distribution ρB with support {ei ,x1,x2},

where x1 ∈ intSm and x2 ∈ int∆. For all x1 sufficiently close to ei and all x2 suffi-

ciently close to µ (with µ ∈ intconvsuppρB), êi < convsuppρB. Thus, Lemma 4.2

implies ϕ produces an expansive error for all x ∈ intconvsuppρB, which includes

some x ∈ intSm. ■

Thus, let x1 ∈ intSm for some Sm ∈ Ŝ1 and U have an expansive error for x1,

with x̂1 B ϕ (x1). Pick an arbitrary face of ∆ that also has Sm as a face, St (t ≥ m).

There are four cases to consider: 1. x̂1 < intSt and St , ∆, 2. x̂1 < intSt and St = ∆,
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3. x̂1 ∈ intS1 (the St under scrutiny is an edge), and 4. x̂1 ∈ intSt with t ≥ 2 (the St

under scrutiny is not an edge).

Case 1: x̂1 < intSt and St , ∆. Let γB have support on t affinely independent points

{x1, . . . ,xt} with xi ∈ St for all i, xi = ei for all i , 1 where ei are distinct vertices of

St, and pi B P (xi).7

Claim A.13. ϕ (x) = x∗ < St for all x ∈ convsuppγB with x = λ · suppγB for vector λ

with
∑t

j=1λj = 1, λj ∈ [0,1] for all j and λ1 > 0.

Proof. Omitted, as the proof follows the proof of Lemma 4.2 nearly exactly. ■

Next, construct a γ ′B with support on t affinely independent points, of which

t − 1 are vertices of St and the last support point is λ · suppγB, where
∑t

j=1λj = 1,

λj ∈ [0,1] for all j, λ1 > 0), and λu is close to 1 for some u , 1 with eu ∈ suppγB. Ev-

idently, for all x ∈ intSt, there exists a λ of this form such that x ∈ intconvsuppγ ′B.

Accordingly, Claim A.13 implies ϕ (x) = x̂1 = x∗ for all x ∈ intSt.

Case 2: x̂1 < intSt and St = ∆. Let ρB have support on 2 points, x1 and x2, with

µ ∈ ℓ◦ (x1,x2). By Lemma 4.2, ϕ (x) = x∗ for all x ∈ ℓ◦ (x1,x2). Next construct ρ′B

with affinely independent support on
{
x′1, . . . ,x

′
n

}
, where convsuppρ′B ⊂ int∆, x′1 ∈

ℓ◦ (x1,x2); and such that x∗ < intconvsuppρ′B. By Lemma 4.2 ϕ (x) = x∗, for all

x ∈ intconvsuppρ′B. If x∗ ∈ int∆, we are in Case 4, below. If x∗ < int∆, then observe

that for all x ∈ int∆, we can find two points x′′1 ∈ intconvsuppρ′B and x′′2 ∈ int∆

such that x,µ ∈ ℓ◦
(
x′′1 ,x

′′
2

)
. Thus, Lemma 4.2 implies ϕ (x) = x∗.

Case 3: x̂1 ∈ intS1. Consider γB with binary support on {x1,x2}, where x1,x2 ∈ S1

(recall x1–which must also be in intS1–is the specified point for which ϕ has an

expansive error). Define

e∗i B
{
ei ∈ E| x1 ∈ ℓ◦

(
x̂1, e

∗
i

)}
.

7Note that γB is not a Bayes-plausible distribution over posteriors, as µ < St ; however, suppγB∪

xt+1 with xt+1 < St and µ in their convex hull is the support of some ρB with affinely independent

support, so we may WLOG work with just γB. We carry this approach throughout this proof.
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By construction, this is well-defined. Then,

Claim A.14. ϕ (x) = x∗ = x̂1 ∈ intS1 for all x ∈ ℓ◦
(
x∗, e∗i

)
. Moreover, either ϕ (x) = x for

all x ∈ intS1 \ ℓ◦
(
x∗, e∗i

)
or ϕ (x) = x∗ for all x ∈ intS1.

Proof. Following the proofs of Claims A.10 and A.11, ϕ (x) = x∗ = x̂1 ∈ intS1 for all

x ∈ ℓ◦
(
x∗, e∗i

)
. Moreover, following the remainder of the proof of Lemma 4.5, either

i. ϕ (x) = x for all x ∈ intS1 \ ℓ◦
(
x∗, e∗i

)
; or ii. there is some x̃ ∈ intS1 \ ℓ◦

(
x∗, e∗i

)
such

that ϕ (x) = x̃ for all x ∈ intS1 \ ℓ◦
(
x̃, e∗i

)
and ϕ (x) = x for all x = λx∗ + (1−λ) x̃ for

some λ ∈ [0,1]. Suppose for the sake of contradiction that x̃ , x∗. However, then by

the first case of this theorem’s proof, ϕ (x) = x∗ = x̃ for all x ∈ int∆, which is false.

Thus, x̃ = x∗. ■

Case 4: x̂1 ∈ intSt, with t ≥ 2. For x,y ∈ St, define

℘ (x,y)B
{
x′ ∈ St | ∃ λ ∈ [0,1] : λx′ + (1−λ)y = x

}
,

i.e., these are the points on the line between x and y on the “opposite” side of x

from y. If St , ∆, observe that for any x ∈ intSt \ ({x1} ∪℘ (x̂1,x1)), we can find a

γB with binary support {x1,x2} such that x ∈ intconvsuppγB (x is a strict convex

combination of x1 and x2) and x̂1 < convsuppγB; and so, by Lemma 4.2, ϕ (x) = x∗

for all such x. Moreover by Claim A.9, we must also have ϕ (x) = x∗ = x̂1 for all

x ∈ intSt.

If St = ∆, we construct the following two distributions: ρ1
B, with support on

{x1,x2}, where µ is a strict convex combination of x1 and x2, and x2 is close to µ;

and ρ2
B, which has support on n affinely independent points, one of which is in the

interior of suppρ1
B, and all of which are close to µ. Lemma 4.2 implies that ϕ (x) =

x∗ for all x ∈ intconvsuppρ1
B and for all x ∈ intconvsuppρ2

B. Provided the support

points of ρ2
B are sufficiently close to µ, which we assume, x∗, x̂1 < convsuppρ2

B.

Furthermore, for any x ∈ int∆ \ (℘ (x∗,µ)∪℘ (x̂1,µ)∪℘ (x1,µ)), we can find a ρ3
B

with binary support {x3,x4} such that x4 ∈ intconvsuppρ2
B, x,µ ∈ intconvsuppρ3

B
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(x is a strict convex combination of x3 and x4), and x∗, x̂1 < convsuppρ3
B. Conse-

quently, by Lemma 4.2, ϕ (x) = x∗ for all such x. Moreover by Claim A.9, we must

also have ϕ (x) = x∗ = x̂1 for all x ∈ intSt.

There is one gap left to fill: what else does respecting the Blackwell order ne-

cessitate, when ϕ makes mistakes for a vertex? Writing êi B ϕ (ei), we have

Claim A.15. If ϕ produces an error for some vertex ei (i ∈ {1, . . . ,n}) êi ∈ ℓ (x∗, ei).

Proof. Suppose for the sake of contraposition that êi and conv {ei ,x∗} can be strictly

separated by a hyperplane

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG conv {ei ,x∗} ⊂H≤α,β B
{
x ∈ R

n−1
∣∣∣α · x ≤ β

}
, which implies êi ∈ ∆ \H≤α,β .

Consider the value function V (x) = max {0,α · x − β}, and let ρB have support

{ei , y} with pB PρB (ei). The payoff to the DM from ρB is

p (αei − β) ,

which is strictly decreasing in p. ■

Note that we do not assume that the error is expansive in this last claim. It

holds regardless of the type of error. ■

A.7 Lemma 4.8 Proof

Proof. Let ρB, corresponding to π, have n affinely independent points of support

{x1, . . . ,xn} and ϕ have a contractive error for one of them, WLOG x1. Let p ≡ p1 ∈

(0,1) denote PρB (x1); and let pj ∈ (0,1) denote PρB

(
xj

)
and x̂j B ϕ

(
xj

)
for all j.

Step 1 (“Edge Points Mapped to the Prior”): Consider another Bayesian distri-

bution over posteriors, ρ′B, corresponding to π′, with support on
{
x′1,x2, . . . ,xn

}
; that

is, all of the support points except for the first one are also support points of ρB.

Moreover, let x′1 ∈ ℓ◦ (x1,xs) for some s , 1, so that ρ′B is a strict MPC of ρB and x′1
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lies on the edge between x1 and xs. Let p′ ∈ (0,1) denote Pρ′B

(
x′1

)
. Let p′j ∈ (0,1)

denote Pρ′B

(
xj

)
for all j , 1. Note that p′ > p, p′s < ps and p′j = pj for all j , 1, s.

Claim A.16. x̂′1B ϕ
(
x′1

)
= µ.

Proof. As ϕ does not produce an expansive error, x̂′1 ∈ ℓx′1 , where possibly x̂′1 =

x′1. Suppose for the sake of contraposition that x̂′1 , µ. In that case the sets

conv
{
x̂′1,x

′
1,x1

}
and conv

{
x̂1,µ

}
can be strictly separated by a hyperplane

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG we may assume that conv
{
x̂1

1,x
1
1,x1

}
is a strict subset of the closed half-

space
{
x ∈ R

n−1
∣∣∣α · x ≥ β

}
. Consider the value function V (x) = max {0,α · x − β}. We

may ignore points xj with j , s,1. Since we are assuming that there are no ex-

pansive errors, we may WLOG assume α · x̂s > β and α · xs > β. Thus, the DM’s

payoff under experiment π is ps (α · xs − β), and her payoff under experiment π′

is p′s (α · xs − β) + p′1
(
α · x′1 − β

)
. Taking the difference of these two expressions, we

obtain

(ps − p′s) (α · xs − β)− p′1 (α · x′1 − β) = −p1 (α · x1 − β) < 0,

as ps + p1 = p′s + p′1 and psxs + p1x1 = p′sxs + p′1x
′
1. ■

Now another Bayesian distribution over posteriors, ρ†B, corresponding to π†,

with support on {
x1,x2, . . . ,xs − 1,x†s ,xs+1, . . .xn

}
,

where s , 1. By construction, all of the support points except for x†s are also sup-

port points of ρ†B. Moreover, let x†s ∈ ℓ◦ (x1,xs), so that ρ†B is a strict MPC of ρB and

x†s lies on the edge between x1 and xs. Let p† ∈ (0,1) denote Pρ†B

(
x†1

)
. Let p†j ∈ (0,1)

denote Pρ†B

(
xj

)
for all j , 1. Note that p† < p, p†s > ps and p†j = pj for all j , 1, s.

Claim A.17. x̂†s B ϕ
(
x†s

)
= µ.

Proof. Omitted as it is virtually identical to the proof of Claim A.16. ■
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Step 2 (“Face Points Mapped to the Prior”): The final step is to show that the

points in intconvsuppρB must all be mapped to µ by ϕ.

i. Consider any 2-dimensional face of the simplex ∆ρB B convsuppρB for which

two (of the three) edges, S1
ρB,i

and S1
ρB,l

, share vertex x1. Evidently, any point x ∈

int∆ρB can be obtained as the strict convex combination of points xi ∈ intS1
ρB,i

and

xl ∈ S1
ρB,l

. It is easy to see that for all such x, U respecting the Blackwell order (and

not producing a contractive error) implies ϕ (x) = µ. If n = 2, we are done.

ii. If n > 2, consider any 3-dimensional face of ∆ρB for which three (of the four)

2-d faces are those specified in i. Following the same logic, any point in the relative

interior of this collection of 3-d faces must be mapped to µ by ϕ. If n = 3, we are

done.

iii. If n > 3, consider any 4-dimensional face...and so on.

This process continues until we arrive at a single face is of maximal dimension

(∆ρB), when it terminates, allowing us to conclude the result. ■

B When Do TwoWrongs Make a Right?

We say that map ϕ : ∆→ ∆ is affine if ϕ (x) = Ax+b for some (n− 1)× (n− 1) matrix

A and b ∈Rn−1.

Lemma B.1. V (ϕ (x)) is convex for all convex V if and only if ϕ is affine.

Proof. (⇒) If ϕ (x) = Ax+ b, then for all x,x′ ∈ ∆ and λ ∈ (0,1)

V (ϕ (λx+ (1−λ)x′)) = V (λ (Ax+ b) + (1−λ) (Ax′ + b))

≤ λV (Ax+ b) + (1−λ)V (Ax′ + b)

= λV (ϕ (x)) + (1−λ)V (ϕ (x′)) ,

so V ◦ϕ is convex.

(⇐) Suppose for the sake of contraposition that there exist distinct x,x′ ∈ ∆ and
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λ ∈ (0,1) such that ϕ (x) = Ax+ b and ϕ (x′) = Ax′ + b but

ϕ (λx+ (1−λ)x′) , A (λx+ (1−λ)x′) + b. (B.1)

Let V (x) = αx, where α ∈Rn−1, so

λV (ϕ (x)) + (1−λ)V (ϕ (x′)) = λαϕ (x) + (1−λ)αϕ (x′)

= λαAx+ (1−λ)αAx′ +αb

= αA (λx+ (1−λ)x′) +αb .

(B.2)

Appealing to Expression B.1, WLOG we assume

α (A (λx+ (1−λ)x′) + b) , αϕ (λx+ (1−λ)x′)

(as otherwise we could just modify α). If

α (A (λx+ (1−λ)x′) + b) < αϕ (λx+ (1−λ)x′) ,

we have, from Equation B.2,

λV (ϕ (x)) + (1−λ)V (ϕ (x′)) = α (A (λx+ (1−λ)x′) + b)

< αϕ (λx+ (1−λ)x′) = V (ϕ (λx+ (1−λ)x′)) .

so V ◦ϕ is not convex. If

α (A (λx+ (1−λ)x′) + b) > αϕ (λx+ (1−λ)x′) ,

we simply define V (x) = −αx, in which case, again, we have

λV (ϕ (x)) + (1−λ)V (ϕ (x′)) < V (ϕ (λx+ (1−λ)x′)) ,

so V ◦ϕ is not convex. ■
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