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Abstract

This paper investigates stochastic continuous time contests with a twist:

the designer requires that contest participants incur some cost to submit their

entries. When the designer wishes to maximize the (expected) performance

of the top performer, a strictly positive submission cost is optimal. When the

designer wishes to maximize total (expected) performance, either the highest

submission cost or the lowest submission cost is optimal.
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1 Introduction

There are significant incentives for managers in the mutual and hedge fund in-

dustries to outperform their fellows. Among other things, this competition is en-

gendered by career concerns:1 promotions are few and far between and managers
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1Chevalier and Ellison (1999) and Brown et al. (2001) are two empirical papers that document

and explore career concerns in the mutual and hedge fund industries.
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must outperform their fellows in order to be selected for such prizes. One nat-

ural way of modelling such competition is introduced by Seel and Strack (2013)

(henceforth SS) who look at a continuous time, winner-take-all contest in which

n agents compete by deciding when to stop independent Brownian motions with

drift that are absorbed at zero. This captures the essentials of the scenario: returns

are stochastic and private, and funds (or managers) can go bankrupt.

In this paper, we add a single, simple twist to the winner-take-all setting of

SS.2 Namely, we require that the contestants must incur some cost (a submission

cost) to become eligible for the contest’s prize. This is a natural feature of this

paper’s motivating example: an investment firm typically requires any promotion

aspirant or prospective employee to fill out an application form and insists that

any candidate disclose evidence of her successes.

Beyond competition between fund managers, there are other natural interpre-

tations of the contests under study and submission costs therein. For example,

academics choose which subfields to inhabit and what projects to pursue, where

the prize is a successful grant proposal, a publication in a top journal, or a presti-

gious appointment. Grants and awards in academia mandate that researchers put

together proposals, the preparation of which takes a considerable amount of time

and effort. Similarly, graduate students in many fields prepare job market papers

in order to secure one of the limited spots in academia and spend scores of hours

in the job market season preparing their applications.

In these examples, the profession’s esteem for the project should be seen as the

value of the stochastic process. The running of the process is then the dissemina-

tion and exposition of the idea. Both positive and negative drift seem reasonable

here: people get tired of seeing the same over-exposed paper, or a shaky project

2In fact, virtually all of our results can be established in the more general scenario in which

agents decide when to stop non-negative time-homogeneous diffusion processes that are absorbed

at 0, but the specific form of the Brownian motion with drift provides structure that eases the

discussion and exposition.
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may have a significant flaw that is more likely to emerge the more time it spends

out. Conversely, the polishing of a paper that emerges as it is publicized may im-

prove the contribution, at least on average.

At first glance, submission costs seem totally wasteful, especially given our

assumption that they correspond to a pure destruction of surplus. However, sub-

mission costs affect the equilibrium play in the contest and any positive changes in

this behavior could potentially outweigh the direct losses due to the costs. We take

the perspective of a principal and look at two possible objectives: maximization of

total (expected) output and maximization of the (expected) performance of the top

agent. Naturally, the principal could either be a literal principal, e.g., the head of

a fund overseeing the managers; or society, which benefits from better allocation

of capital, innovations, and research.

Perhaps surprisingly, even though submission costs do not factor into the prin-

cipal’s utility (they are a negligible portion of her revenue), they may nonetheless

benefit the principal. More specifically, when the drift is positive the total (ex-

pected) output is strictly increasing in the size of the submission cost. When the

drift is negative this relationship is flipped and lower submission costs are better.

Regardless of the sign of the drift, the (expected) maximal performance is increas-

ing in the submission cost provided the submission cost is sufficiently small, and

the maximal submission cost remains optimal for a positive drift. Contrary to re-

ceived wisdom, the investment firm from the leading example may not wish to

reduce “red tape” and lower (or eliminate) barriers to promotion or employment.

Submission costs produce two conflicting forces. On one hand, fixing agents’

output distributions, submission costs discourage disclosure–why pay to lose? This

is unambiguously bad for the principal. On the other hand, these costs also alter

the equilibrium output distributions, and do so in a way that benefits the prin-

cipal. At equilibrium each agent’s strategy yields a continuous distribution over

stopped values on [0, x̄] and places an atom on 0. An agent does not enter the con-
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test if and only if she obtains value 0. This is not so bad for the principal; however,

as this is the only value worthless to her. That is, the negative force described above

is completely negated at equilibrium. When the drift is positive, the mass point

placed on 0 also means that an agent’s average submitted value increases (think

of Bayes-plausibility), which is good for the principal by itself; and also generates

longer tails, which is also beneficial.

1.1 Related Work

Several papers extend the results in SS in a variety of ways. Of special note is

Nutz and Zhang (2022) (henceforth NZ) who study the effects of changing the

prize structure in the model of SS, and find that more inegalitarian prize schedules

lead to longer tailed distributions in managers’ performance or output (stopped

values of their respective processes)–greater risk taking–leading to higher average

output when the drifts of the agents’ processes are positive and higher maximal

performance regardless of the sign of the drift. Also related is Seel (2015), who

allows for heterogeneous loss constraints; Nutz and Zhang (2021), who look at a

mean-field version of the game; and a trio of works, Feng and Hobson (2015), Feng

and Hobson (2016a), and Feng and Hobson (2016b), who allow for more general

diffusion processes, regret, and a random initial law, respectively.

Fang and Noe (2016) establish an equivalence between the stochastic contest of

SS and a static game in which the contests choose randomizations over output that

must satisfy a constraint on their mean (which game is itself a generalization of

Wagman and Conitzer (2012)). This finding leads directly to our equilibrium char-

acterization and uniqueness result. They also look at the effects of different (more

or less equal) prize schedules, contestant heterogeneity and incomplete informa-

tion, and other contest modifications (scoring caps, penalty triggers and localized

contests) on equilibrium behavior and output.

There is also connection between these works and those papers that look at

4



competitive Bayesian persuasion–see, e.g. Albrecht (2017), Boleslavsky and Cot-

ton (2015), Au and Kawai (2020), and Hwang et al. (2018). For a binary prior and

uncorrelated states, the competitive persuasion problem, the contest of Fang and

Noe (2016) (with a performance cap), and the pricing game of Spiegler (2006) are

equivalent. At the end of Section 3, we discuss this paper’s findings in the context

of competitive persuasion.

Naturally, this paper is also related to the substantial collection of papers that

look at risk-taking contests more broadly. This group of papers includes Das-

gupta and Stiglitz (1980), Bhattacharya and Mookherjee (1986) and Klette and

De Meza (1986), who look at variants of an R&D contest; Hvide (2002), Hvide

and Kristiansen (2003), Goel and Thakor (2008), Gilpatric (2009), and Fang and

Noe (Forthcoming), who look at promotion contests; Basak and Makarov (2015),

Strack (2016), Whitmeyer (2019), and Lacker and Zariphopoulou (2019), who look

at contests between investment managers in financial settings; and Robson (1992),

Hopkins (2018), and Zhang (2020), who look at contests for status and/or relative

rank.

1.1.1 Entry Costs

There is also a literature that explores entry fees in all-pay contests. The first work

in this area is Higgins et al. (1985), who study entry fees in a classical rent-seeking

contest. In their seminal work, Moldovanu and Sela (2001) briefly study entry

fees in all-pay auctions with incomplete information. There, the purpose of such

fees are exclusionary: costs dissuade low ability types from entering. Importantly;

however, they note that reducing entry is always suboptimal when agents are ho-

mogeneous.

Liu and Lu (2019) explore entry fees in Moldovanu and Sela’s setting further

and highlight the tradeoff between encouraging entry and effort. Specifically,

winner-take-all encourages effort within the contest, which benefits the principal;
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but dissuades entry, which harms the principal. In Section 4.1, we study entry

costs in this paper’s setting. Like in the standard all-pay environment, such costs

have a pernicious effect on entry. Interestingly, they also have a negative effect on

agents’ experimentation and so are completely without merit from the principal’s

perspective. Fu et al. (2015), Ginzburg (2021), and Kaplan and Sela (2010) are

three other works that study entry fees. The last highlights the benefit of entry

fees on selection: entry fees can benefit a principal by encouraging the probability

that high types win the contest.

All in all, entry fees in these all-pay contests trade off participation with effort

and or selection. Our current surroundings have an endogenous-entry feature;

namely, after experimenting, each agent has private information (her realization)

and must decide whether to submit. As in these other papers, as we noted above,

there is a direct negative effect of costs on participation/submission. However,

as we also noted above, at equilibrium this negative effect is endogenously in-

consequential. Moreover, the additional positive effect of submission costs on the

agents’ output distributions here is absent from the aforementioned works.

2 The Main Analysis

There are n agents i = 1,2, . . . ,n who participate in the following contest. Time

is continuous, and at each point in time t ≥ 0 each agent i privately observes the

realization of a stochastic process

Xit = x0 +µt + σBit ,

where x0 > 0 is the initial value for each agent’s process and each
(
Bit

)
t≥0

is an

independent Brownian motion. At any point in time, an agent may (privately)

decide whether to stop the process and either submit the realization (and incur a

cost c ≥ 0) or decline to submit. If an agent’s submitted output is strictly greater

than the maximal submitted output of the other contestants, she obtains a prize
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normalized to 1. If there is a tie for first place, it is broken fairly (though this will

not happen on the equilibrium path). If she does not submit her output, she gets a

payoff of 0.3

We assume that the principal commits ex ante to the submission cost, and is

limited to costs within some interval [0, c̄] with c̄ ∈ (0,1). Moreover, following

the literature on this problem, we assume that 0 is an absorbing boundary. This

captures the fact that the fund (or fund managers) of this paper’s motivation can

go bankrupt. We also make the following parametric assumption, which ensures

that agents’ equilibrium stopping times are finite:

1 +n
(1− c̄)

(
exp

{
−2µx0

σ2

}
− 1

)
1−nc̄+ (n− 1) c̄(

n
n−1 )

> 0 .

This is always satisfied when µ ≤ 0.

A strategy for an agent i in the stopping problem is a stopping time τi . Equiv-

alently, because it is only the distribution over stopped values that matters, this

problem of choosing τi can be reduced to one of choosing an optimal distribu-

tion Fi over stopped values that is feasible, i.e., that can be induced by a stopping

time. This problem of finding a stopping time to embed a probability measure

is the well-known Skorokhod embedding problem.4 Moreover, the set of feasible

distributions is readily available for us to take “off-the-shelf.” Let F be the set of

feasible distributions and s (x) be the scale function of the stochastic process X. For

the Brownian motion with drift of this paper, the scale function is

sB (x) =


σ2

2µ −
σ2

2µ exp
{−2µx
σ2

}
, if µ , 0

x, if µ = 0 .
(1)

Then, from Theorem 2.1 in Pedersen and Peskir (2001) (see also Lemma 1 in SS,

the discussion on p.25 of Feng and Hobson (2015) and Lemma 2.1 in NZ),

3Our results do not change qualitatively if a contestant is still eligible for the prize when she

does not submit (more on this at the end of Section 3).
4Obłój (2004) surveys the literature on this problem.
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Remark 2.1. The set of feasible distributions F consists of all distributions F sup-

ported on [0,∞) that satisfy
∫
R+
s (x)dF (x) = s (x0).

Note that when X is a martingale, the set of feasible distributions becomes

those distributions F on [0,∞) that have mean x0. Moreover, because the scale

function is strictly monotone, as noted by NZ–see, e.g., the discussion preceding

their Theorem 3.2–and Feng and Hobson (2015), it is without loss of generality to

solve for the equilibrium (and verify uniqueness) in the driftless case.

This problem (without a submission cost) is solved in Fang and Noe (2016)

(Theorem 1), and it is easy to see that the fee only alters the strategic interaction

slightly. Indeed, observe that agents’ distributions over values that they submit

must be atomless and such that the payoff for each agent in submitted values is an

affine function of the value. Accordingly, for c > 0, each agent must both submit

and not submit with positive probability–the former because the distribution over

submitted values must be atomless, and the latter because an agent always benefits

by deviating and submitting if nobody else does.

It is also clear that if an agent does not submit value x′ at equilibrium, then

she does not submit any values x ≤ x′. Thus, because a concavification argument

eliminates all other possibilities, the only value that an agent does not submit at

equilibrium is 0–her equilibrium distribution must place a mass point on 0. More-

over, as an agent’s payoff as a function of her submitted value must be continuous

at equilibrium–see, e.g., SS’s proof of their Proposition 3 or the proof of Lemma 4

in Fang and Noe (2016)–she must be exactly indifferent between submitting 0 or

not, i.e.,

Fn−1 (0)− c = 0 .

Thus, the unique symmetric equilibrium when X is a martingale is for each

agent to choose distribution

F̃ (x) =
(
c+λ

x
x0

)( 1
n−1 )

, on
[
0, (1− c) x0

λ

]
,
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where

λ = λ (c)B
1−nc+ (n− 1)c(

n
n−1 )

n
.

The agent does not submit if and only if she obtains realization 0.5 Substituting

in the scale function, we generate the equilibrium distribution when the diffusion

has drift:6

F (x) =
(
c+λ

sB (x)
sB (x0)

)( 1
n−1 )

, on
[
0,
−σ2

2µ
log

{
1−

2µ
σ2

(1− c)sB (x0)
λ

}]
︸                                       ︷︷                                       ︸

B[0,x̄(c)]

. (2)

Proposition 2.2. There exists a unique symmetric equilibrium. Each agent chooses the

distribution F given in Expression 2 and does not submit her realization if and only if

it is 0.

When there are only two agents, it is easy to show that the unique symmetric

equilibrium of Proposition 2.2 is in fact the only possible equilibrium, symmetric

or otherwise.

Remark 2.3. Let n = 2. In the unique equilibrium, each agent chooses the distri-

bution F described in Expression 2.

3 Comparative Statics

In this part, we follow Section 3 of NZ closely. Naturally, the mechanism used by

the principal to effect change is different, yet we show that raising submission costs

affects equilibrium play in the same manner as making the prizes more unequal.

Of course, the prize schedule in this model is already as inequitable as possible,

5This is due to the necessary continuity of an agent’s equilibrium payoff: there cannot be a

positive probability of a tie at any disclosed value. Otherwise, an agent could do strictly better by

experimenting a little longer, thereby breaking the tie in her favor.
6A previous version of this paper also studies the case in which X is exponential Brownian

motion. In that specification, analogs of these results all hold.
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Figure 1: Equilibrium cdf for c = 0 (solid red) and c > 0 (dashed blue).

yet submission costs still can benefit the principal significantly. The proofs for this

section may be found in Appendix A.

We say that two cdfs F and F̂ are strictly single-crossing if there exists a point

x∗ ∈ suppF ∪ supp F̂ such that F (x) > F̂ (x) for all x ∈ [0,x∗) and F (x) < F̂ (x) for all

x ∈ (x∗, x̄ (c)) (with equality for all x < 0 and x ≥ x̄ (c) and at x = x∗).

Lemma 3.1. If c > ĉ, the equilibrium distribution corresponding to ĉ, F̂, is strictly single

crossing with regard to the equilibrium distribution corresponding to c, F.

This single crossing phenomenon can be seen in Figure 1. Next, we encounter

the following theorem, which specifies the effect of submission costs on average

equilibrium output.

Theorem 3.2. Let c > ĉ and F and F̂ be the corresponding equilibrium distributions,

respectively. Let φ : R+→R be an increasing, absolutely continuous function.

(i) If φ′/s′ is increasing on (0, x̄ (c)), then EF̂ [φ (x)] ≤ EF [φ (x)].

(ii) If φ′/s′ is decreasing on (0, x̄ (c)), then EF̂ [φ (x)] ≥ EF [φ (x)].

The inequalities are strict unless φ is an affine transformation of s.
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For Brownian motion with drift, s′ (x) = exp
{
−2µx/σ2

}
, and so d/dx [φ′ (x) /s′ (x)]

has the same sign as φ′′ (x) + 2µ/σ2φ′ (x). Thus,

Corollary 3.3. E [φ (x)] is increasing in the submission cost when µ ≥ 0 andφ is convex

and decreasing in the submission cost when µ ≤ 0 and φ is concave. These inequalities

are strict if φ is not constant and µ , 0.

This immediately implies the following result concerning the effect of submis-

sion costs on the average output of each agent.

Corollary 3.4. E [Xτ ], is strictly increasing in the submission cost when µ > 0 and

strictly decreasing in the submission cost when µ < 0. Thus, the uniquely optimal sub-

mission costs, respectively, are c̄ and 0.

One interesting relative of this result concerns the magnitude of the improve-

ment in output that can be brought about via a submission cost. Namely, for cer-

tain regions of the parameter space the total output with two contestants and the

optimal submission cost exceeds the total output with three contestants and no

submission cost.

Our final result of this section concerns the expected value of the contest win-

ner’s performance. As one might suspect, the expected value of the maximal out-

put is increasing in the size of the submission cost when the drift is positive. In-

tuitively, when the principal cares about the maximum from a number of draws

from a distribution, she prefers longer right tails. When the drift is positive, she

also prefers such longer experimentation and so the effects act in synergy. On the

other hand, when the drift is negative, the two forces are possibly countervailing

since increasing the second moment sacrifices the first. However, it turns out that

the latter is more important: the principal always prefers a small submission cost

to no submission cost.

Theorem 3.5. The submission cost that maximizes the expected maximal performance,

E

[
maxiXτi

]
, is c̄ if µ ≥ 0 and is strictly greater than 0 if µ < 0.
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In this paper’s model, the agents who do not submit entries are ineligible for the

prize. It is easy to extend our analysis to the modified scenario in which agents who

do not submit entries are still eligible (where their values are now their expected

values, at equilibrium, given their choice of non-disclosure). Moreover, in some

contests, submission costs are refunded in the event of a success; and in some

contests, submission costs are refunded in the event of a failure. Those changes

are also easy to accommodate.

In the first modification, in which agents who do not submit entries are still

eligible, it is obvious that the belief assigned by the principal to non-disclosure

must be 0 (since otherwise an agent would benefit by secretly experimenting more

in the non-disclosure region). As in the main specification, each agent must put a

mass point on 0 but now the size of the mass point γN must solve

γn−1
N − c =

γn−1
N

n
;

viz., γn−1
N = nc/ (n− 1). In the second modification, in which only submitters are

eligible, but obtain a refund in the event of a victory, the size of the mass point γV

must solve

γn−1
V (1 + c)− c = 0 ;

that is, γn−1
V = c/ (1 + c). In the third modification, in which only submitters are

eligible, but obtain a refund in the event of a loss, the size of the mass point γL

must solve

γn−1
L + (1−γn−1

L )c − c = 0 ;

which reduces to γL = 0. Given these, the unique equilibrium distribution is

F (x) =
(
γι +λι

sB (x)
sB (x0)

)( 1
n−1 )

, on
[
0,
−σ2

2µ
log

{
1−

2µ
σ2

(1−γι)sB (x0)
λι

}]
, ι =N,V ,L ,

where

λιB
1−nγι + (n− 1)γ

( n
n−1 )

ι

n
, ι =N,V ,L .
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In short, changing the particulars regarding the submission cost is equivalent to

changing the cost. Finally, observe that for c > 0,

0︸︷︷︸
γn−1
L

<
c

1 + c︸︷︷︸
γn−1
V

< c <
nc
n− 1︸︷︷︸
γn−1
N

,

and so the following remark follows from the earlier results.

Remark 3.6. For a fixed c, the average performance of an agent, E [Xτ ], is highest

when non-submitters are also eligible for the prize when µ ≥ 0 and is highest when

losers’ fees are refunded when µ < 0.

It is immediate that the special case of the contest when the drift equals zero

and non-submitters are eligible for the prize is equivalent to a competitive per-

suasion problem in which n agents each privately choose experiments about an

idiosyncratic binary state, which they may disclose to a receiver at some cost c ≥ 0,

who then selects the sender whom he esteems highest, breaking ties fairly. The

lone modification is that, because agents’ values are beliefs, there is an upper

bound of 1 on agent’s values, so for large enough n or prior value, x0, agents place

a mass point on value 1 as well. Thus, an analog of Theorem 3.5 holds: for all

disclosure costs sufficiently small, the principal’s (receiver’s) welfare is strictly in-

creasing in agents’ disclosure costs.

4 Two Exercises

Toward gaining intuition, this section studies two variants of the model. In the

first scenario, we replace the submission cost with an entry fee; and in the second,

we replace the absorbing boundary with a flow cost of experimentation.
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4.1 Entry Costs

What if the submission cost were replaced with an entry cost? That is, suppose

that each agent must now pay the cost c ∈ [0, c̄] “up front,” before experimenting;

but then, having entered, can disclose his value for free. To mimic the main setting

as closely as possible, we impose that each agent’s entry decision is private.

In addition, we focus on symmetric equilibria in which each agent participates

with probability ρ ∈ (0,1]. Note that ρ > 0, since otherwise an agent could deviate

profitably by participating and winning the the contest by default. Moreover, each

agent’s expected payoff from participating is

n∑
k=1

Rk

(
n− 1
k − 1

)
H (x)n−k (1−H (x))k−1 ,

where

Rk =
n∑
i=k

(
n− 1
i − 1

)
ρn−i (1− ρ)i−1 , (3)

which is a prize schedule that satisfies the conditions of NZ. Accordingly, the (sym-

metric) equilibrium distribution in the experimentation portion of the game is

given in Proposition 2.3 of that paper. Moreover, each player’s payoff from partic-

ipating is just the average payoff 1
n

∑n
k=1Rk = 1− n−1

n ρ. Thus,

Lemma 4.1. The unique symmetric equilibrium is as follows:

(i) If the entry cost, c, is sufficiently small (c ≤ 1
n), each agent always enters then

chooses the distribution given in Expression 2 with c = 0.

(ii) Otherwise (c > 1
n), each agent enters with probability ρ = n

n−1 (1− c) then chooses

the distribution specified in Proposition 2.3 of NZ for the prize schedule Rk given

in Equation 3.

An immediate corollary of this result is that a low entry cost has no effect on

the principal’s welfare whatsoever. On the other hand, NZ show that the most

inegalitarian prize schedule maximizes experimentation and, therefore, expected

performance as well as total performance when the drift is positive. Consequently,
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Proposition 4.2. A low entry cost (c ≤ 1
n) maximizes the (expected) maximal perfor-

mance, E
[
maxiXτi

]
and, if the drift, µ, is positive, maximizes average output E [Xτ ].

Proof. From Lemma 4.1, the (effective) prize schedule when c ≤ 1
n is more inegal-

itarian (in the sense of the Lorenz order) than the (effective) prize schedule for

c > 1
n . Given this, the second statement of the proposition follows from Corollary

3.5 in NZ. Observing that the maximal performance is bounded by the maximal

performance when all n agents enter, the first statement of the proposition follows

from Theorem 3.8 in NZ. ■

In short, when the drift is positive, a large entry cost is doubly bad. It not only

reduces experimentation but also results in fewer agents (in expectation) entering

the contest in the first place.

4.2 Costly Experimentation

Reassuringly, our main qualitative finding–that submission costs benefit a princi-

pal in risk-taking contests–persists in a related (and realistic) environment. Sup-

pose that there are just two agents and that each agent’s stochastic process is a mar-

tingale: Xit = σBit,
7 where we have normalized the initial value x0 = 0. No longer

is each agent’s process absorbed at 0; instead, each agent incurs a flow cost γ > 0

every instant she runs the process. We maintain the other standing assumptions of

the model: agents’ observations and stopping decisions are private, an agent must

incur a submission cost of c ≥ 0 to submit her realization, and the winner’s (loser’s)

prize is 1 (0).

As discussed above, because it is only the distribution over values that is payoff-

relevant for an agent, we can think of each agent as simply choosing a feasible

7The primary reason for this pair of assumptions is tractability: when there are more than two

agents or the process has nonzero drift, a closed form for the equilibrium distribution is more

difficult to obtain.
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distribution, F, from the set of distributions on the real line with mean 0. Now,

such a choice is costly: the results of Root (1969) imply that the cost of distribution

F is given by the cost functional

C (F)B κ

∫
x2dF (x) ,

where κB γ/σ2. It is straightforward to establish the following result.

Proposition 4.3. If the cost of entering the contest is large (c > 1), agents neither ex-

periment nor submit. If the submission cost is small, the equilibrium distribution is

quadratic with one point mass of size c on the lower bound of its support.

The equilibrium distribution is

F (x) = κx2 +Ax+B+ c, on [−D,E] ,

where

A =
4
√
κ (1− c)3/2

3
, B =

4
9

(1− c)3 D =
2(1− c)3/2

3
√
κ

, and E =
(2c+ 1)

√
1− c

3
√
κ

.

This equilibrium is qualitatively similar to that in our main specification: an agent

induces (via some randomization over stopping times) a distribution over stopped

values that has a single mass point on the lower bound of its support, after which

the agent does not submit; and a continuous portion over values thereafter, which

are always submitted.

The (expected) maximal performance, E
[
maxiXτi

]
, is

2(1− c)3/2 (4c+ 1)
15
√
κ

,

which attains its unique maximum when c = 1/4. Thus,

Remark 4.4. Mandating min {c̄,1/4} = c maximizes maximal performance.

We see that an analog of Theorem 3.5 persists despite the change of environ-

ment. A strictly positive submission cost maximizes the maximal performance.

Curiously, the optimal c is independent of the variance of the process and the flow

cost of experimentation.
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5 Discussion

This paper establishes that in contests in which agents compete by risk-taking, in-

troducing submission costs benefits a principal whenever she prefers more experi-

mentation. Thus, in a variety of contests–including those pertaining to innovation,

promotion within a firm, investment, status, and persuasion–seemingly inefficient

frictions may actually improve a principal’s (society’s) welfare. Unlike entry fees,

which may benefit a principal by increasing effort by dampening competition, sub-

mission costs do the opposite and fan competition’s flames, encouraging greater

risk taking and longer tails in agents’ outputs.

One final note: a natural question is to ask what would happen if the con-

testants could submit the maximal value of the process (rather than the terminal

value)?8 When there is no cost to running the process (and an absorbing bound-

ary at 0) the answer is simple: it is weakly dominant for agents to run the process

forever. On the other hand, when there is no such absorbing boundary and agents

must instead pay a flow cost of γ > 0 to run their processes, the problem corre-

sponds to a modified version of Urgun and Yariv (2021)’s setting in which each

agent’s payoff is now endogenous (an equilibrium object) and the search scope is

exogenously fixed at σ . As they note, this problem leads to an intractable ODE,

though perhaps a clever guess would yield an equilibrium.
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A Omitted Proofs

A.1 Remark 2.3 Proof

Proof. SS establish uniqueness of the equilibrium with c = 0 when there are just

two agents in their Proposition 3. Because of this, it suffices to show here that in

any equilibrium each agent must submit her entry with the same probability as

the other agent. It is clear that the only value that contestants may not submit at

equilibrium is 0. Let a ≥ 0 be the size of the mass agent 1’s distribution places on

0 and b ≥ 0 be the size of the mass agent 2’s distribution places on 0. We must

have a,b ≥ c; otherwise, if say a < c, agent 2 would strictly prefer to deviate and not
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submit a positive measure of values that lie strictly above 0. On the other hand, if

a > c, agent 2 prefers to deviate and always submit. Thus a = b = c. ■

A.2 Lemma 3.1 Proof

Proof. We prove this result for the general case in which agents’ processes are non-

negative time homogeneous diffusions. The equilibrium distribution is

G (x) =
(
c+λ

s (x)
s (x0)

)( 1
n−1 )

, on
[
0,ψ

(
(1− c) s (x0)

λ

)]
︸                   ︷︷                   ︸

C[0,x̄(c)]

,

where s (x) is the scale function of X and ψ (·)B s−1 (·).

Directly, G (0) = c(
1
n−1 ), which is obviously strictly increasing in c. Likewise,

∂
∂c

{
ψ

(
(1− c) s (x0)

λ

)}
= ψ′

(
(1− c) s (x0)

λ

)
s (x0)

∂
∂c

{1− c
λ

}
> 0 ,

since s is strictly monotone. As a result, by the intermediate value theorem, there

exists at least one point x in the interior of suppG∪ supp Ĝ where G (x) = Ĝ (x).

Next, we need to show that this intersection point is unique. Define Υ (x) B

G (x)− Ĝ (x), which can be written out as

Υ (x) =
(
c+λ

s (x)
s (x0)

)( 1
n−1 )
−
(
ĉ+ λ̂

s (x)
s (x0)

)( 1
n−1 )

,

where λ̂ is defined in the obvious way. Directly, Υ ′ (x) has the same sign as

λ

(
c+λ

s (x)
s (x0)

)( 1
n−1−1)

︸                    ︷︷                    ︸
Cr(λ)

−λ̂
(
ĉ+ λ̂

s (x)
s (x0)

)( 1
n−1−1)

.

If n = 2, this reduces to λ− λ̂ < 0, as required. For the remainder let n ≥ 3. Then,

r ′ (λ) =
(
c+λ

s (x)
s (x0)

)( 1
n−1−1)

+λ
s (x)
s (x0)

( 1
n− 1

− 1
)(
c+λ

s (x)
s (x0)

)( 1
n−1−2)

=
(
c+λ

s (x)
s (x0)

1
n− 1

)(
c+λ

s (x)
s (x0)

)( 1
n−1−2)

> 0

.
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Now, suppose for the sake of contradiction that Υ ′ (x) ≥ 0, which implies that

λ̂

(
c+ λ̂

s (x)
s (x0)

)( 1
n−1−1)

− λ̂
(
ĉ+ λ̂

s (x)
s (x0)

)( 1
n−1−1)

≥ 0 ,

or (
c+ λ̂

s (x)
s (x0)

)−( n−2
n−1 )
≥

(
ĉ+ λ̂

s (x)
s (x0)

)−( n−2
n−1 )

,

a contradiction because c > ĉ. ■

A.3 Theorem 3.2 Proof

Proof. As we do for the previous lemma, we establish this result for the general

case. We follow the proof of Theorem 3.2 in NZ virtually verbatim.

Via integration by parts,

EĜ [φ (x)]−EG [φ (x)] = −
∫ x̄(c)

0

(
Ĝ (x)−G (x)

)
φ′ (x)dx .

By Lemma 3.1, Ĝ is strictly single-crossing with regard toGwith some intersection

point x∗ ∈ (0, x̄ (c)). Thus,∫ x̄(c)

0

(
Ĝ (x)−G (x)

)
s′ (x)

φ′ (x)
s′ (x)

dx ≥
φ′ (x∗)
s′ (x∗)

∫ x̄(c)

0

(
Ĝ (x)−G (x)

)
s′ (x)dx .

Next, we again integrate by parts∫ x̄(c)

0

(
Ĝ (x)−G (x)

)
s′ (x)dx =

(
Ĝ (x)−G (x)

)
s (x)

∣∣∣∣x̄(c)

0
−
∫ x̄(c)

0
(ĝ (x)− g (x))s (x)dx = 0 ,

since by definition the feasible distributions, G, are those that satisfy∫
R+

s (x)
s (x0)

dG (x) = 1 .

Combining expressions yields part 1 of the theorem, and the second part can be

obtained in virtually identical fashion mutatis mutandis. ■
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A.4 Theorem 3.5 Proof

Proof. We keep the convention that c > ĉ ≥ 0 with hats over the corresponding

objects to the latter. By Lemma 3.1 F̂ is strictly single crossing with regard to

F and so F−1 is strictly single crossing with regard to F̂−1. Let y∗ be the unique

crossing point. First, let µ ≥ 0, in which case we may follow the proof of Theorem

3.8 in NZ. We have∫ 1

c(
1
n−1 )

yn−1F−1 (y)dy−
∫ 1

ĉ(
1
n−1 )

yn−1F̂−1 (y)dy > yn−1
∗

[∫ 1

c(
1
n−1 )

F−1 (y)dy −
∫ 1

ĉ(
1
n−1 )

F̂−1 (y)dy
]
≥ 0 ,

where the last inequality follows from Corollary 3.4 since µ ≥ 0.

Now let µ < 0, and observe that it suffices to show that E [maxiXi] is strictly

increasing in c at c = 0. Via Leibniz’s rule, we have

d
dc

{∫ 1

c(
1
n−1 )

yn−1F−1 (y)dy
}

=
∫ 1

c(
1
n−1 )

∂
∂c

{
yn−1F−1 (y)

}
dy . (A1)

Directly,

F−1 (y) = −α ln

1−

(
yn−1 − c

)
s (x0)

λα

 ,

where αB σ2/ (2µ). Using this, Expression A1 evaluated at 0 has the same sign as∫ 1

0

nyn−1 − 1
1 +nβyn−1y

n−1dy >
1
n

1 + β

∫ 1

0

(
nyn−1 − 1

)
dy = 0 ,

where β B − (1− exp {−x0/α}) > 0. ■

A.5 Proposition 4.3 Proof

Proof. It is easy to see that when c > 1, not experimenting then not submitting

is strictly dominant. If c ≤ 1, the logic is analogous to that of Proposition 2.2,

with one exception: as noted in Lemma 6 of Seel and Strack (2016), we also need

the right-hand side derivative of the equilibrium distribution to be 0 at the lower

bound of its support, −D. The equilibrium distribution must leave the other con-

testant willing to randomize; equivalently, the equilibrium distribution must be
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such that a contestant’s payoff for any value x in the support of her equilibrium

distribution must lie on a line. Viz., we must have

Ax+B = F (x)− kx2 − c ,

for all x in the support of the equilibrium distribution. Rearranging this, the equi-

librium cdf is

F (x) = Ax+B+ kx2 + c, on [−D,E] , (linearity of payoff)

where variables A, B, D, and E comprise the unique solution to the following sys-

tem of four equations such that F is feasible:

c = F (−D) = −AD +B+ kD2 + c , (support condition I)

1 = F (E) = AE +B+ kE2 + c , (support condition II)∫ E

−D
(A+ 2κx)xdx =Dc , (feasibility)

A = 2κD . (derivative condition)

This yields the values given in the text. ■
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