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A Two Examples from Section 3.3

This section contains two examples that illustrate that the set of effective-value distributions that can be

induced deterministically is not convex, and that not all Bayes-plausible distributions (with mean
̄
𝑈 = 𝜇−𝑐)

are inducible, respectively. First, the non-convexity example:
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Example A.1. Consider the effective-value distribution supported on
{
0,

̄
𝑈 , �̄�

}
with respective proba-

bilities (1 − 𝜇) /2, 1/2 and 𝜇/2. It can be induced by a mixed strategy that randomizes fairly between full

information and no information. If it could be generated by some deterministic distribution over posteriors

𝐹𝑖 , then this 𝐹𝑖 must have reservation value �̄� (by Equation (2) in the text). However, by Equation (3) in

the text, its expected effective value conditional on falling short of �̄� must be zero, contradicting that 𝐹𝑖
assigns positive weight to

̄
𝑈 > 0. We have identified an effective-value distribution that can be induced

only via mixing.

Second, the inducibility example:

Example A.2. Consider an effective-value distribution supported on
{
̄
𝑈 /2, �̄�

}
with respective proba-

bilities 2 (1 − 𝜇) / (2 − 𝜇) and 𝜇/ (2 − 𝜇) (so that its mean is
̄
𝑈 ). We can invoke Lemma 3.5 to show that it

is not inducible. If it were, its associated reservation-value distribution would have an atom at �̄� . The

corresponding distribution over posteriors 𝐹𝑖 (⋅; �̄� ) must have an atom at effective value 0. Equation (3)

in the text then implies an atom at 0, a contradiction.

B An Asymmetric Equilibrium

We begin this sectionwith the following proposition, which points out that although asymmetric equilibria

are impossible when there are just two firms, they may exist when there are three or more firms.

Proposition B.1. If 𝑛 = 2, there exist no asymmetric equilibria. If 𝑛 ≥ 3 then for any 𝜇 < �̄� that is

sufficiently close to �̄�, there exists an equilibrium in which 𝑛 − 1 firms choose the binary distribution with

support {0, 1 − 𝑐/𝜇} and one firm chooses the uniform distribution on [0, 2 (𝜇 − 𝑐)].

The precise condition required for this equilibrium to exist is

2(1 − 𝜇)
𝑛 + 1 − 2𝜇

≥ (1 − 𝜇)𝑛−1 ≥
1
𝑛
. (𝑆1)

Proof. Because the game is zero-sum, the first part of this result is trivial. If there existed an asymmetric

equilibrium then there would exist multiple pure strategy equilibria, which we know is false.

To establish the second part of the proposition, observe that the corresponding distribution over values

played by the 𝑛 − 1 firms is just the prior and is induced by providing full information. For each of these
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firms, its payoff as a function of the induced effective value, 𝑤 , is

Π (𝑤) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

(1−𝜇)𝑛−2
2(𝜇−𝑐) 𝑤, if 𝑤 ∈ [0, 2 (𝜇 − 𝑐)]

(1 − 𝜇)𝑛−2 , if 𝑤 ∈ (2 (𝜇 − 𝑐) , �̄� )
1−(1−𝜇)𝑛−1
𝜇(𝑛−1) , if 𝑤 = �̄�

.

Thus, the optimal distribution is either the prior (full information), yielding a payoff of (1 − (1 − 𝜇)𝑛−1) / (𝑛 − 1);

or has support on [0, 2 (𝜇 − 𝑐)], yielding a payoff of (1 − 𝜇)𝑛−2 /2. Hence, we need

1 − (1 − 𝜇)𝑛−1

𝑛 − 1
≥
(1 − 𝜇)𝑛−2

2
⇔

2(1 − 𝜇)
𝑛 + 1 − 2𝜇

≥ (1 − 𝜇)𝑛−1 .

The construction of the effective-value distribution for the firm that is choosing the uniform distri-

bution is described in the paper (it is just the low mean two firm distribution and can be done, e.g., by

mixing over binary distributions over posteriors). From any distribution over effective values other than

that corresponding to full information (the prior), firm 𝑛’s payoff is (1 − 𝜇)𝑛−1; whereas its payoff from full

information is 1/𝑛, since the vector of strategies would then be symmetric. Thus, the optimal distribution

is either the prior, yielding a payoff of 1/𝑛; or any distribution with support on [0, 1 − 𝑐/𝜇], yielding a payoff

of (1 − 𝜇)𝑛−1. Accordingly, we need (1 − 𝜇)𝑛−1 ≥ 1/𝑛. Both conditions combine to yield Expression (𝑆1). ■

In this equilibrium, 𝑛 − 1 firms provide full information, and the 𝑛th firm chooses a distribution over

effective values that is identical to the equilibrium distribution when there are two firms and 𝜇 is low.

Surprisingly, this equilibrium yields a higher consumer welfare than the symmetric equilibrium.1 This

proposition contrasts nicely with the results of Armstrong et al. (2009), who show that when firms are

symmetric, making a firm prominent lowers consumer welfare. Here, we encounter an equilibrium in

which 𝑛−1 firms are endogenously prominent, yet consumerwelfare rises despite the asymmetric behavior.

This is because, in contrast to Armstrong et al. (2009), in which the non-prominent firms raise prices to

the detriment of the consumer, it does not matter to the consumer here what the last firm does.

While this proposition does not exhaustively identify all asymmetric equilibria, it suggests that an

interesting avenue for future research could be comparing the properties of asymmetric equilibria with

the symmetric equilibria on which this paper focuses. If 𝑛 ≥ 3, there also exist asymmetric equilibria for

certain parameter ranges in which each firm chooses a pure strategy. In the next subsection we show
1The reason is as follows. First, because 𝜇 < �̄� the symmetric equilibrium does not involve full disclosure. Moreover, as

the search cost vanishes, the consumer’s welfare in the asymmetric equilibrium identified in the proposition converges to the

first-best.
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that any such equilibrium must be one in which all but one firm provide full information (and induce the

maximum reservation value).

B.1 Asymmetric Pure-Strategy Equilibria

Proposition B.2. In any asymmetric equilibrium in which each firm’s choice of signal is deterministic, 𝑛 − 1

firms provide full information.

Proof. Let us assume that there exists such an equilibrium. Let 𝑈𝑚𝑎𝑥 denote the maximal reservation that

is induced on path (obviously 𝑈𝑚𝑎𝑥 ≤ �̄� ). First, suppose for the sake of contradiction that 𝑈𝑚𝑎𝑥 < �̄� .

There are two subcases: either multiple firms induce 𝑈𝑚𝑎𝑥 or only one does. However, the technique of

effective-value optimization that we introduce in the paper immediately implies that in both cases, a firm

has a profitable deviation. Indeed, if multiple firms induce 𝑈𝑚𝑎𝑥 in this purported equilibrium, one of those

firms can deviate profitably by providing slightly more information, thereby inducing some reservation

value 𝑈 > 𝑈𝑚𝑎𝑥 . On the other hand, if only one firm induces 𝑈𝑚𝑎𝑥 , although its payoff from the realized

expected value 𝑈𝑚𝑎𝑥 is 1, so is its payoff from any realized expected value 𝑈 ∈ (𝑈𝑚𝑎𝑥 − 𝜀, 𝑈𝑚𝑎𝑥 ] for all 𝜀 > 0

sufficiently small. Consequently, this firm can deviate by providing less information. We may conclude

that 𝑈𝑚𝑎𝑥 = �̄� .

Second, suppose that 𝑈𝑚𝑎𝑥 = �̄� . Note that for any asymmetric equilibrium to exist, there must be three

or more firms. Define �̂� ≡ max
{
𝑈 ∶ 𝑈 induced on path, 𝑈 < �̄�

}
, which is well-defined since there exist

only finitely many firms and we have imposed that the equilibrium under examination is asymmetric.

There are two subcases. Either each of the other firms is inducing �̄� or at least one is not. The analysis

for the latter case is identical to that of the preceding paragraph: if multiple firms are inducing �̂� , one can

deviate by providing more information; if only one is, it can deviate by providing less information. Thus,

𝑛 − 1 firms induce �̄� and one induces �̂� . ■

C Equilibrium Characterization with Heterogeneous Firms

What happens when there are two firms with different expected qualities? Without loss of generality,

let 𝜇1 ≥ 𝜇2. We find that there are four different regions of the parameter space, each of which begets

a different variety of equilibrium. First, if the gap between the means is large enough–specifically, if the

maximum reservation value that firm 2 can induce is weakly less than the minimum reservation value that

firm 1 can induce–then in all equilibria, firm 1 chooses the degenerate distribution over effective values
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(corresponding to no information) and firm 2 chooses any distribution over effective values. The consumer

visits firm 1 first and selects it for sure.

Next, if the gap between means is not as large and firm 2’s mean is not too high (𝜇2 < 1/2), there

are two regions in which both firms’ payoff functions–and hence both firms’ distributions over effective

values–have the familiar linear structure. In both of these regions, firm 2 places an atom on effective value

0, and in one of the regions firm 1 places an atom on firm 2’s maximum effective value (1 − 𝑐/𝜇2).

Finally, if the gap in means is not large but 𝜇2 ≥ 1/2, firm 1 chooses a binary distribution over effective

values supported on 0 and 1 − 𝑐/𝜇2, and firm 2 chooses a linear distribution over effective values. This

is a similar equilibrium, qualitatively, to the asymmetric equilibrium from the previous subsection. The

attraction incentive dominates for firm 1 who is always visited first. Firm 2, on the other hand, is content

to “pick up the scraps.” It is visited second but always selected by the consumer if visited. Moreover, this

equilibrium also shares the same property as its analog when firms are homogeneous. The consumer’s

payoff converges to the first-best (full information) as the search cost vanishes. Thus, our result from

the homogeneous firms setting–that search frictions beget the first-best level of information provided the

average quality is sufficiently high–carries over to the heterogeneous firms setting. The following theorem

provides a synopsis of these results.

Theorem C.1. Let the average match value for firm 1 be weakly greater than the average match value for

firm 2: 𝜇1 ≥ 𝜇2. Then,

(i) If 𝜇1 − 𝑐 ≥ 1 − 𝑐/𝜇2, there is a collection of equilibria in which firm 1 chooses the degenerate distribution

over effective values with support {𝜇1 − 𝑐} and firm 2 chooses any distribution over effective values.

(ii) If 𝜇2 ≤ 1/2 and 1 − 𝑐/𝜇2 ≥ 2 (𝜇1 − 𝑐), there is an equilibrium in which firm 1 and firm 2 choose linear

distributions over effective values. Firm 2 places a mass point on the effective value 0.

(iii) If 𝜇2 ≤ 1/2 and 2 (𝜇1 − 𝑐) ≥ 1 − 𝑐/𝜇2 ≥ 𝜇1 − 𝑐, there is an equilibrium in which firm 1 and firm 2 choose

linear distributions over effective values. Firm 2 places a mass point on the effective value 0, whereas

firm 1 places a mass point on the effective value 1 − 𝑐/𝜇2.

(iv) If 𝜇2 ≥ 1/2 and 𝜇1 − 𝑐 < 1 − 𝑐/𝜇2, there is an equilibrium in which firm 1 chooses the binary distribution

over effective values with support {0, 1 − 𝑐/𝜇2} and firm 2 chooses a distribution over effective values

that is piece-wise linear with one discontinuity.

The theorem compiles the results from the following four lemmas. One-by-one,

Lemma C.2. If 𝜇1 − 𝑐 ≥ 1 − 𝑐/𝜇2, there is a collection of equilibria in which firm 1 chooses the degenerate

distribution over effective values, 𝜇1 − 𝑐 with probability 1, and firm 2 chooses any distribution over effective
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values. Firm 1’s distribution over effective values corresponds, e.g., to a completely uninformative signal.

Proof. The result is trivial. Firm 1 is visited first and selected with certainty. ■

Lemma C.3. If 𝜇2 ≤ 1/2 and 1 − 𝑐/𝜇2 ≥ 2 (𝜇1 − 𝑐), there is an equilibrium in which firm 1 and firm 2 choose

distributions over effective values 𝐻1 (𝑤) and 𝐻2 (𝑤), respectively, where

𝐻1 (𝑤) =
𝑤

2 (𝜇1 − 𝑐)
, on [0, 2 (𝜇1 − 𝑐)] ,

and

𝐻2 (𝑤) = 1 −
𝜇2 − 𝑐
𝜇1 − 𝑐

+(
𝜇2 − 𝑐
𝜇1 − 𝑐)

𝑤
2 (𝜇1 − 𝑐)

, on [0, 2 (𝜇1 − 𝑐)] .

Proof. It is easy to verify that these distributions are feasible, but it remains to verify that they are inducible.

To that end, we construct them as follows. Firm 1’s random (reservation) value 𝑈1 is distributed according

to distribution 𝐺1:

𝐺1 (𝑢) ≡ ℙ (𝑈1 ≤ 𝑢) =
1

𝜇1 − 𝑐
𝑢 − 1, on [𝜇1 − 𝑐, 2 (𝜇1 − 𝑐)] ,

where for each 𝑢 ∈ [𝜇1 − 𝑐, 2 (𝜇1 − 𝑐)], the distribution over posteriors, 𝐹 (⋅; 𝑢), is the binary distributionwith

support {2 (𝜇1 − 𝑐) − 𝑢, 𝑢 + 2𝑐}. In turn, firm 2’s random (reservation) value 𝑈2 is distributed according to

distribution 𝐺2.

𝐺2 (𝑢) ≡ ℙ (𝑈2 ≤ 𝑢) =
1

𝜇1 − 𝑐
𝑢 − 1, on [𝜇1 − 𝑐, 2 (𝜇1 − 𝑐)] ,

where for each 𝑢 ∈ [𝜇1 − 𝑐, 2 (𝜇1 − 𝑐)], 𝐹 (⋅; 𝑢) is a ternary distribution with pmf

𝑃 (⋅; 𝑢) =
⎧⎪⎪
⎨⎪⎪⎩

0 𝑏(𝑢) 𝑎(𝑢)

1 − 𝜇2−𝑐
𝜇1−𝑐

𝜇2−𝑐
2(𝜇1−𝑐)

𝜇2−𝑐
2(𝜇1−𝑐)

⎫⎪⎪
⎬⎪⎪⎭
, where 𝑎(𝑢) ≡ 𝑢 + 2𝑐

𝜇1 − 𝑐
𝜇2 − 𝑐

and 𝑏(𝑢) ≡ 2 (𝜇1 − 𝑐) − 𝑢 .

The top row of the matrix is the support of the distribution and the bottom row the associated probability

weights. Evidently, these constructions yield the desired distributions over effective values. ■

Lemma C.4. If 𝜇2 ≤ 1/2 and 2 (𝜇1 − 𝑐) > 1 − 𝑐/𝜇2 > 𝜇1 − 𝑐, there is an equilibrium in which firm 1 and firm 2

choose distributions over effective values 𝐻1 and 𝐻2, respectively, where

𝐻1 (𝑤) = 2(1 −
𝜇2 (𝜇1 − 𝑐)
𝜇2 − 𝑐 )

𝜇2
𝜇2 − 𝑐

𝑤, on [0,
𝜇2 − 𝑐
𝜇2 ] ,

and

𝐻2 (𝑤) = 1 − 2𝜇2 + 2𝜇2
𝜇2

𝜇2 − 𝑐
𝑤, on [0,

𝜇2 − 𝑐
𝜇2 ] .
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Proof. As above, it is easy to verify that these distributions are feasible, but it remains to verify that they

are inducible. To that end, we construct them as follows.

Firm 1’s random (reservation) value 𝑈1, is distributed according to distribution 𝐺1:

𝐺1 (𝑢) ≡ ℙ (𝑈1 ≤ 𝑢) = 4
𝜇2

𝜇2 − 𝑐 (
1 −

𝜇2 (𝜇1 − 𝑐)
𝜇2 − 𝑐 ) (𝑢 − (𝜇1 − 𝑐)) , on [𝜇1 − 𝑐,

𝜇2 − 𝑐
𝜇2 ] ,

where for each 𝑢 ∈ [𝜇1 − 𝑐, 1 − 𝑐/𝜇2), 𝐹 (⋅; 𝑢) is binary with support {𝑏 (𝑢) , 𝑎 (𝑢)}, where 𝑎 (𝑢) ≡ 𝑢 + 2𝑐 and

𝑏 (𝑢) ≡ 2 (𝜇1 − 𝑐) − 𝑢; and 𝐹 𝜇2−𝑐
𝜇2

(𝑥) is defined as

𝐹 𝜇2−𝑐
𝜇2

(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

2(𝜇1−𝑐−
𝜇2−𝑐
𝜇2 )

3(
𝜇2−𝑐
𝜇2 )

2
−8(𝜇1−𝑐)

𝜇2−𝑐
𝜇2

+4(𝜇1−𝑐)2
𝑥, if 𝑥 ∈ [0, 2 (𝜇1 − 𝑐) − 𝜇2−𝑐

𝜇2 ]

1 − (
𝜇2−𝑐
𝜇2 + 3𝑐 − 2(𝜇1−𝑐)𝜇2

𝜇2−𝑐 𝑐) , if 𝑥 ∈ [2 (𝜇1 − 𝑐) − 𝜇2−𝑐
𝜇2 , 𝜇2−𝑐𝜇2 + 3𝑐 − 2(𝜇1−𝑐)𝜇2

𝜇2−𝑐 𝑐)

1, if 𝑥 ∈ [
𝜇2−𝑐
𝜇2 + 3𝑐 − 2(𝜇1−𝑐)𝜇2

𝜇2−𝑐 𝑐, 1]

.

Viz., 𝐹 𝜇2−𝑐
𝜇2

(𝑥) has a point mass of size

𝜇2−𝑐
𝜇2

3 𝜇2−𝑐𝜇2 − 2 (𝜇1 − 𝑐)
on 𝜇2 − 𝑐

𝜇2
+ 3𝑐 −

2 (𝜇1 − 𝑐) 𝜇2
𝜇2 − 𝑐

𝑐 .

Evidently, 𝑎 is increasing in 𝑢 and takes values in the interval [𝜇1 + 𝑐, 1 − 𝑐/𝜇2 + 2𝑐]; and 𝑏 is decreasing in

𝑢 and takes values in the interval [𝜇1 − 𝑐, 2 (𝜇1 − 𝑐) − 1 + 𝑐/𝜇2]. We should verify four things:

Claim C.5. The upper bound of 𝑎(𝑢) is less than 1, i.e., 1 − 𝑐/𝜇2 + 2𝑐 ≤ 1.

Proof. Directly,
𝜇2 − 𝑐
𝜇2

+ 2𝑐 = 1 −
𝑐
𝜇2

+ 2𝑐 ≤ 1 − 2𝑐 + 2𝑐 = 1 ,

since 𝜇2 ≤ 1/2. ■

Claim C.6. 3𝑐 − 2 (𝜇1 − 𝑐) 𝜇2𝑐/ (𝜇2 − 𝑐) ≤ 2𝑐.

Proof. This holds if and only if

1 ≤
2 (𝜇1 − 𝑐) 𝜇2

𝜇2 − 𝑐
⇔

𝜇2 − 𝑐
𝜇2

≤ 2 (𝜇1 − 𝑐) ,

which holds by assumption. ■

Claim C.7. 𝐹 𝜇2−𝑐
𝜇2

(𝑥) does not have support above 1, i.e., 1 − 𝑐/𝜇2 + 3𝑐 − 2 (𝜇1 − 𝑐) 𝜇2𝑐/ (𝜇2 − 𝑐) ≤ 1.

Proof. Directly,
𝜇2 − 𝑐
𝜇2

+ 3𝑐 −
2 (𝜇1 − 𝑐) 𝜇2

𝜇2 − 𝑐
𝑐 ≤

𝜇2 − 𝑐
𝜇2

+ 2𝑐 ≤ 1 ,

where the first inequality follows from Claim C.6, and the second inequality from Claim C.5. ■
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Claim C.8.
𝜇2 − 𝑐
𝜇2

+ 3𝑐 −
2 (𝜇1 − 𝑐) 𝜇2

𝜇2 − 𝑐
𝑐 >

𝜇2 − 𝑐
𝜇2

≥ 2 (𝜇1 − 𝑐) −
𝜇2 − 𝑐
𝜇2

.

Proof. The right hand inequality holds since 1 − 𝜇2/𝑐 ≥ 𝜇1 − 𝑐. Now the left-hand inequality:

𝜇2 − 𝑐
𝜇2

+ 3𝑐 −
2 (𝜇1 − 𝑐) 𝜇2

𝜇2 − 𝑐
𝑐 ≥

𝜇2 − 𝑐
𝜇2

+
3 (𝜇1 − 𝑐) 𝜇2

𝜇2 − 𝑐
𝑐 −

2 (𝜇1 − 𝑐) 𝜇2
𝜇2 − 𝑐

𝑐 >
𝜇2 − 𝑐
𝜇2

,

since 1 − 𝑐/𝜇2 ≥ 𝜇1 − 𝑐. ■

Note that for the special sub-case where 2 (𝜇1 − 𝑐) − (𝜇2 − 𝑐) ≥ 1 − 𝑐/𝜇2 > 𝜇1 − 𝑐, the distribution over

effective values can also be generated by a pure strategy distribution over values 𝐹 ∗, where

𝐹 ∗ (𝑥) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

2 𝜇2
𝜇2−𝑐 (1 −

(𝜇1−𝑐)𝜇2
𝜇2−𝑐 ) 𝑥, if 𝑥 ∈ [0,

𝜇2−𝑐
𝜇2 ]

2(1 −
(𝜇1−𝑐)𝜇2
𝜇2−𝑐 ) , if 𝑥 ∈ [

𝜇2−𝑐
𝜇2 , 𝜇2−𝑐𝜇2 + 𝑐(𝜇2−𝑐)

2(𝜇1−𝑐)𝜇2−(𝜇2−𝑐))

1, if 𝑥 ∈ [
𝜇2−𝑐
𝜇2 + 𝑐(𝜇2−𝑐)

2(𝜇1−𝑐)𝜇2−(𝜇2−𝑐) , 1]

.

It suffices to check

𝜇2 − 𝑐
𝜇2

+
𝑐 (𝜇2 − 𝑐)

2 (𝜇1 − 𝑐) 𝜇2 − (𝜇2 − 𝑐)
≤ 1 ⇔ 2 (𝜇1 − 𝑐) − (𝜇2 − 𝑐) ≥ 1 −

𝑐
𝜇2

.

Firm 2’s random (reservation) value 𝑈2, is distributed according to distribution 𝐺2:

𝐺2 (𝑢) ≡ ℙ (𝑈2 ≤ 𝑢) =
2𝜇2
𝜇2 − 𝑐

𝑢 − 1, on [
𝜇2 − 𝑐
2𝜇2

,
𝜇2 − 𝑐
𝜇2 ] ,

where for each 𝑢 ∈ [1/2 − 𝑐/ (2𝜇2) , 1 − 𝑐/𝜇2], 𝐹 (⋅; 𝑢) is given by the ternary distribution with pmf

𝑃 (⋅; 𝑢) =
⎧⎪⎪
⎨⎪⎪⎩

0 𝑏(𝑢) 𝑎(𝑢)

1 − 2𝜇2 𝜇2 𝜇2

⎫⎪⎪
⎬⎪⎪⎭
, where 𝑎(𝑢) ≡ 𝑢 +

𝑐
𝜇2

and 𝑏(𝑢) ≡
𝜇2 − 𝑐
𝜇2

− 𝑢 .

■

Lemma C.9. If 𝜇2 ≥ 1/2 and 1 − 𝑐/𝜇2 ≥ 𝜇1 − 𝑐, there is an equilibrium in which firm 1 chooses the binary

distribution over effective values with support {0, 1 − 𝑐/𝜇2}, and firm 2 chooses the distribution over effective

values 𝐻2 (𝑤), where

𝐻2(𝑤) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

(1−𝜇2)2
𝜇2 (

𝑤
𝜇2−𝑐) , if 𝑤 ∈ [0, 𝜇2 − 𝑐)

𝜇2
𝜇2−𝑐𝑤, if 𝑤 ∈ [𝜇2 − 𝑐, 1 − 𝑐

𝜇2 ]

1, if 𝑤 ≥ 1 − 𝑐
𝜇2

.
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Proof. Firm 1 induces its effective-value distribution by choosing the binary distribution over posteriors

with support {0, 𝜇1 (𝜇2 − 𝑐) / (𝜇2 (𝜇1 − 𝑐))}, and firm 2 induces its effective-value distribution by choosing

distribution 𝐺2 over reservation values:

𝐺2 (𝑢) ≡ ℙ (𝑈2 ≤ 𝑢) =
𝑢

𝜇2 − 𝑐
−
1 − 𝜇2
𝜇2

on [𝜇2 − 𝑐,
𝜇2 − 𝑐
𝜇2 ] ,

where for each 𝑢 ∈ [𝜇2 − 𝑐, 1 − 𝑐/𝜇2], 𝐹 (⋅; 𝑢) is binary with support {(𝜇2 − 𝑐 − 𝜇2𝑢) / (1 − 𝜇2) , 𝑢 + 𝑐/𝜇2}. ■

D Relevant Outside Option

While our main analysis has abstracted away the consumer’s outside option, the tools we developed can

be applied to the setting in which the consumer has a relevant outside option. Suppose the consumer

has an outside option 𝑢0 ∈ (0, �̄� ) to which she may always return upon quitting her search.2 A possible

interpretation of the outside option is a common product price that is exogenously determined. With a

binding outside option, the game between the firms is no longer zero-sum, as the consumer will refrain

from making any purchase if the firms’ quality realizations turn out to be less than 𝑢0, an event that we

find has a strictly positive probability. Following Section 4 in the text, we focus on a symmetric equilibrium

that gives rise to a payoff function that is linear on the interior of its support, analogous to that reported

in Lemma 4.1. A minor difference here is that the payoff function must be flat at 0 in the interval [0, 𝑢0),

which necessitates a discrete jump at 𝑢0. Consequently, the effective-value distribution must possess an

atom at 0 (even when 𝜇 is low).

Following Section 4, denote by 𝐻𝑖 a symmetric-equilibrium distribution of effective values chosen by

each firm, let 𝛼 ∈ [0, 1] be the probability that a firmoffers full information, and let �̂� ≡ sup (supp (𝐻𝑖) /
{
�̄�
}
).

With a relevant outside option, we say a payoff function has the linear structure if it takes one of the fol-

lowing forms.

Semi-linear form:

Π (𝑤;𝐻𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑤 = [0, 𝑢0)

(𝛼 (1 − 𝜇))𝑛−1 + (1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1

�̂�−𝑢0
× (𝑤 − 𝑢0) , if 𝑤 ∈ [𝑢0, �̂� ]

(1 − 𝛼𝜇)𝑛−1 , if 𝑤 ∈ (�̂� , �̄� )

1−(1−𝛼𝜇)𝑛
𝑛𝛼𝜇 , if 𝑤 = �̄�

, (𝑆2)

where (𝛼 (1 − 𝜇))𝑛−1 /𝑢0 > [(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1] /(�̂� − 𝑢0). Note that this form includes the full-

disclosure equilibrium as a special case, with 𝛼 = 1 and �̂� = 0.
2The condition 𝑢0 < �̄� ensures that search is not strictly dominated for the consumer and thus remains relevant.
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Fully-linear form:

Π (𝑤;𝐻𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑤 = [0, 𝑢0)

(1 − 𝛼𝜇)𝑛−1 × 𝑤
�̂�
, if 𝑤 ∈ [𝑢0, �̂� ]

(1 − 𝛼𝜇)𝑛−1 , if 𝑤 = (�̂� , �̄�)

1, if 𝑤 = �̄�

. (𝑆3)

In the rest of this section, we prove the following result, which is also stated in the text.

Proposition D.1. Suppose the consumer’s outside option is relevant, i.e., 𝑢0 ∈ (0, �̄� ), and that 𝑛 ≥ 3. A

symmetric equilibrium that begets a linear payoff function exists and is unique (up to the effective-value

distribution). There is a cutoff 𝜇𝐹𝐷 ∈ (0, 1) such that the equilibrium has full disclosure whenever 𝜇 ≥ 𝜇𝐹𝐷 . If

the equilibrium involves partial disclosure, firms must mix.

It is clear that if the payoff function takes the linear form described in Expressions (𝑆2) and (𝑆3), it

is a best response to offer an effective-value distribution supported on [𝑢0, �̂� ] ∪
{
0, �̄�

}
in the former

case and [𝑢0, �̂� ] ∪ {0} in the latter case. The lemma below uses the necessary conditions for a symmetric

equilibrium–in particular, the dependence of the equilibrium payoff on the atom assigned to effective value

0–to pin down the specific equilibrium form (whether it is semi-linear, fully linear or full disclosure; as

well as the feasible values of 𝛼 and �̂� ) for each combination of the average quality 𝜇 and the outside option

𝑢0.

Lemma D.2. Suppose 𝑛 ≥ 3, and let 𝜇𝐹𝐷 be the unique solution to equation 1− (1 − 𝜇)𝑛 = 𝑛 (1 − 𝜇)𝑛−1. Within

the class of symmetric equilibria that beget a linear payoff function, the unique form of the equilibrium depends

on the average quality 𝜇 and the outside option 𝑢0 as follows.

(i) If 𝜇 ≥ 𝜇𝐹𝐷 , the equilibrium has full disclosure for all 𝑢0 > 0.

(ii) For each 𝜇 ∈ (1/𝑛, 𝜇𝐹𝐷), there are cutoffs 𝑢𝐿0 and 𝑢𝐹𝐷0 such that the equilibrium payoff function neces-

sarily takes the semi-linear form if 𝑢0 < 𝑢𝐿0 , takes the fully-linear form if 𝑢0 ∈ [𝑢𝐿0 , 𝑢𝐹𝐷0 ), and has full

disclosure if 𝑢0 ≥ 𝑢𝐹𝐷0 .

(iii) For each 𝜇 ≤ 1/𝑛, there is a cutoff 𝑢𝐹𝐷0 such that the equilibrium payoff function necessarily takes the

fully-linear form if 𝑢0 < 𝑢𝐹𝐷0 and has full disclosure if 𝑢0 ≥ 𝑢𝐹𝐷0 .

Proof. Consider first the case of full disclosure in equilibrium. If all other firms are fully revealing, the

expected payoff of a firm by following suit is (1 − (1 − 𝜇)𝑛) /𝑛. The optimal deviation is either a distribution

with support {
̄
𝑈 } (if 𝑢0 ≤ ̄

𝑈 ) or one with support {0, 𝑢0} (if 𝑢0 > ̄
𝑈 ), with respective payoffs (1 − 𝜇)𝑛−1 and
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(1 − 𝜇) ×
̄
𝑈 /𝑢0. Therefore, full disclosure can arise in equilibrium if and only if

1 − (1 − 𝜇)𝑛

𝑛
≥ (1 − 𝜇)𝑛−1 × min

{
1, ̄

𝑈
𝑢0

}
. (𝑆4)

Recall that 𝜇𝐹𝐷 is the unique solution to equation 1−(1 − 𝜇)𝑛 = 𝑛 (1 − 𝜇)𝑛−1. Inequality (𝑆4) holds whenever

𝜇 ≥ 𝜇𝐹𝐷 regardless of 𝑢0. When 𝜇 < 𝜇𝐹𝐷 , inequality (𝑆4) holds if and only if 𝑢0 is sufficiently large;

specifically:

𝑢0 ≥
𝑛 (1 − 𝜇)𝑛−1

1 − (1 − 𝜇)𝑛
× (𝜇 − 𝑐) ≡ 𝑢𝐹𝐷0 (𝜇) .

Note that 𝑢𝐹𝐷0 is hump-shaped with 𝑢𝐹𝐷0 (𝑐) = 𝑢𝐹𝐷0 (1) = 0. Therefore, for each 𝑢0 ∈ (0, �̄� ), full disclosure

can be sustained as an equilibrium either if 𝜇 is sufficiently large or if 𝜇 is sufficiently small.

We now move on to the partial disclosure equilibrium. Denote by 𝑣 the equilibrium payoff of an

individual firm, and by 𝛽 ∈ (0, 1 − 𝜇) the atom at 0 that an individual firm assigns in its effective-value

distribution. The two variables are related by

𝑣 =
1 − 𝛽𝑛

𝑛
. (𝑆5)

Suppose the equilibrium takes the semi-linear form. In this case, reservation value �̄� is on the support

and must deliver the equilibrium payoff 𝑣. Moreover, the atom 𝛽 at 0 is due only to reservation value �̄� ,

and hence is equal to 𝛼 (1 − 𝜇). These two facts imply

𝑣 = (1 − 𝜇)
1 − (1 −

𝜇
1−𝜇 𝛽)

𝑛

𝑛𝛽
. (𝑆6)

Equating (𝑆5) and (𝑆6) gives an equation in 𝛽 , which has a unique solution in the interval (0, 1 − 𝜇) if and

only if 𝜇 > 1/𝑛. To see this, note that the RHS of (𝑆5) is decreasing and concave in 𝛽 and equal to 1/𝑛

at 𝛽 = 0, whereas the RHS of (𝑆6) is decreasing and convex in 𝛽 and equal to 𝜇 at 𝛽 = 0. Moreover, it is

straightforward to verify that the RHS of the two equations coincide when 𝛽 = 1 − 𝜇.

Suppose 𝜇 > 1/𝑛 and denote the unique solution (in the interval 𝛽 ∈ (0, 1 − 𝜇)) to the system of equations

(𝑆5) and (𝑆6) above by (�̂�, 𝛽). Suppose further that 𝑢0 ≤
̄
𝑈 . As Π

̄
𝑈 (𝑤) = Π̂

̄
𝑈 (𝑤) for all 𝑤 ∈ [𝑢0, ̄

𝑈 ]

(otherwise, this interval of effective values would not be on the support of the equilibrium distribution), it

is necessary that
𝛽𝑛−1

𝑢0
≥

�̂�

̄
𝑈

⇔ 𝑢0 ≤
𝛽𝑛−1

�̂� ̄
𝑈 ≡ 𝑢𝐿0 (𝜇) .

It is noteworthy that 𝑢𝐿0 (𝜇) equals 0 at 𝜇 = 1/𝑛, equals 𝜇𝐹𝐷 − 𝑐 at 𝜇 = 𝜇𝐹𝐷 , and is increasing in 𝜇. Moreover,

it can be shown that �̂� ≥ 𝛽𝑛−1, so that 𝑢𝐿0 (𝜇) ≤ ̄
𝑈 . In summation, the equilibrium can take the semi-linear
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form only if 𝜇 > 1/𝑛 and 𝑢0 ≤ 𝑢𝐿0 (𝜇). In this case, 𝛼 = �̂� ≡ 𝛽/ (1 − 𝜇) and

�̂� − 𝑢0 =
(1 −

𝜇𝛽
1−𝜇)

𝑛−1
− 𝛽𝑛−1

�̂� − 𝛽𝑛−1
(
̄
𝑈 − 𝑢0) . (𝑆7)

The requirement 𝑢0 ≤ 𝑢𝐿0 (𝜇) ensures that
(𝛼(1−𝜇))𝑛−1

𝑢0 > (1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1

�̂�−𝑢0
holds. We wish to establish that

�̂� ≤ �̄� . To this end, it suffices to focus on the case 𝑢0 = 0, as �̂� stated above is decreasing in 𝑢0. As �̂� and

𝛽 are obtained by solving the system (𝑆5) and (𝑆6), the inequality �̂� ≤ �̄� can be stated as

1 − (1 − 𝜇�̂�)𝑛

𝑛
≥ 𝜇�̂� (1 − 𝜇�̂�)𝑛−1 + (�̂� (1 − 𝜇))𝑛 , (𝑆8)

where �̂� is implicitly given by �̂� (�̂� (1 − 𝜇))𝑛 + (1 − �̂�) = (1 − 𝜇�̂�)𝑛. It follows from a change of variable and

straightforward algebra that (𝑆8) can be rewritten as

𝑇 (𝑥) ≡
(
(1−𝑥)𝑥𝑛−1+1

(1−𝑥𝑛) − 1
𝑛)

−1

((
(1−𝑥)𝑥𝑛−1+1

(1−𝑥𝑛) − 1
𝑛)

−1
− 1 + 𝑥)

𝑛

𝑥𝑛 + (
(1−𝑥)𝑥𝑛−1+1

(1−𝑥𝑛) − 1
𝑛)

−1
− 1

≤ 1 , (𝑆9)

where 𝑥 = 1−𝜇�̂� .3 We show that (𝑆9) holds for all 𝑥 ∈ [0, 𝜇𝐹𝐷] and 𝑛 ≥ 3. It follows from direct substitution

that 𝑇 (0) = 0 and 𝑇 (𝜇𝐹𝐷) = 1. It remains to show that 𝑇 (𝑥) is increasing. By direct computation, 𝑇 ′ (𝑥)

has the same sign as 𝑥3𝐴 (𝑥) + 𝑥𝑛+3𝐵 (𝑥), where

𝐴 (𝑥) = (1 − 𝑥𝑛) (𝑛 − 1) − 𝑥𝑛−2 (𝑛2 − 𝑛 + 1) (1 − 𝑥) + 𝑥𝑛−1 (1 − 𝑥) ,

and

𝐵 (𝑥) = 1 − 𝑥𝑛−3 (2𝑥 − 1) (𝑛 + 𝑥 − 𝑛𝑥) .

We show that both 𝐴 (𝑥) and 𝐵 (𝑥) are nonnegative over 𝑥 ∈ [0, 𝜇𝐹𝐷]. First,

𝐴′ (𝑥) = 𝑛2𝑥𝑛−3 (1 − 𝑥)(𝑥 −
𝑛3 − 3𝑛2 + 3𝑛 − 2

𝑛2 ) .

As (𝑛3 − 3𝑛2 + 3𝑛 − 2) /𝑛2 exceeds 𝜇𝐹𝐷 for all 𝑛 ≥ 3, 𝐴 (𝑥) is decreasing. Moreover, 𝐴 (0) = 𝑛 − 1 > 0 and

𝐴 (1) = 0. Second,

𝐵′ (𝑥) = −2 (𝑛 − 1)2 𝑥𝑛−4 (1 − 𝑥)(𝑥 −
𝑛 (𝑛 − 3)
2 (𝑛 − 1)2)

.

Therefore, 𝐵 is either increasing or inverted U-shaped. Moreover, 𝐵 (0) = 1 and 𝐵 (1) = 0.

3Using the definition of �̂� , the inequality �̂� ≤ �̄� can be written as �̂� ≤ (
(1−𝑥)𝑥𝑛−1+1

(1−𝑥𝑛 ) − 1
𝑛)

−1
. Moreover, the implicit definition of

�̂� can transformed into 𝑥𝑛 + �̂� − 1 − �̂� (�̂� + 𝑥 − 1)𝑛 = 0, yielding an inverse relation between �̂� and 𝑥 . Moreover, as the LHS of the

last equation is increasing in �̂� , the inequality stated holds by substituting �̂� = (
(1−𝑥)𝑥𝑛−1+1

(1−𝑥𝑛 ) − 1
𝑛)

−1
.
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Finally, consider equilibria that take the fully-linear form. With a full-linear payoff function, the equi-

librium payoff 𝑣 is equal to Π̂ (
̄
𝑈 ;𝐻𝑖), implying that

𝑣 =
𝛽𝑛−1

𝑢0 ̄
𝑈 . (𝑆10)

If the full information equilibrium exists, i.e., (𝑆4) holds, the solution to the system of equations (𝑆5) and

(𝑆10) would have 𝛽 > 1 − 𝜇 and 𝑣 < (1 − (1 − 𝜇)𝑛) /𝑛, eliminating this class of equilibria. Therefore, for the

rest of this proof, suppose (𝑆4) does not hold. It is clear that the system (𝑆5) and (𝑆10) has a unique solution–

denote it by (�̂�, 𝛽). Define the probability of full information, �̂� , as follows. If �̂� ≥ 𝜇, set �̂� = 0; otherwise,

set �̂� to be the unique solution to �̂� = 1−(1−𝛼𝜇)𝑛
𝑛𝛼 .4 Moreover, full-linearity dictates that �̂� = (1 − �̂�𝜇)𝑛−1×

̄
𝑈 /�̂�.

Evidently,

�̂� = (1 − 𝛼𝜇)𝑛−1 × ̄
𝑈
�̂�

=
(1 − 𝛼𝜇)𝑛−1
1−(1−𝛼𝜇)𝑛

𝑛𝛼

×
̄
𝑈 =

𝑛𝛼 (1 − 𝛼𝜇)𝑛−1

(1 − (1 − 𝛼𝜇)𝑛)
×
̄
𝑈 ≤

1
𝜇
×
̄
𝑈 = �̄� ,

where the inequality follows from the fact that 𝑛𝛼 (1 − 𝛼𝜇)𝑛−1 / (1 − (1 − 𝛼𝜇)𝑛) is a decreasing function in 𝑛

and is equal to 1/𝑛 at 𝛼 = 0.

We finish by verifying that a fully-linear payoff function with 𝛼 = �̂� and �̂� chosen above satisfies the

necessary conditions for an equilibrium whenever 𝜇 ≤ 1/𝑛 or 𝑢0 ≥ 𝑢𝐿0 (𝜇). To this end, it suffices to check

that 𝛽 ≥ �̂� × (1 − 𝜇). The case of �̂� = 0 (�̂� ≥ 𝜇) is immediate, so consider �̂� > 0. As the RHS of (𝑆5) is

decreasing and concave in 𝛽 , whereas the RHS of (𝑆6) is decreasing and convex in 𝛽 , either 𝜇 ≤ 1/𝑛 or

𝑢0 ≥ 𝑢𝐿0 (𝜇) ensures that

�̂� ≥ (1 − 𝜇)
1 − (1 −

𝜇
1−𝜇 𝛽)

𝑛

𝑛𝛽
. (𝑆11)

The fact that 1−(1−𝛼𝜇)𝑛
𝑛𝛼 is decreasing in 𝛼 , together with the definition �̂� = 1−(1−�̂�𝜇)𝑛

𝑛�̂� , implies 𝛽/ (1 − 𝜇) ≥ �̂� .

The analysis above covers all parameter configurations for any 𝑛 ≥ 3, 𝜇 ∈ (0, 1) and 𝑢0 ∈ (0, �̄� ). ■

Similar to the no outside option case, the effective-value distributions that yield (𝑆2) or (𝑆3) can be

generated by mixed strategies that involve randomization of binary distributions over posteriors only.

Lemma D.3. The effective-value distribution 𝐻𝑖 implied by either (𝑆2) or (𝑆3) is inducible. Moreover, it

can be generated by a mixed strategy (𝐺 (⋅) , {𝐹 (⋅;𝑈 ) ∶ 𝑈 ∈ supp (𝐺)}) in which 𝐹 (⋅;𝑈 ) is binary for each

𝑈 ∈ supp (𝐺).

Proof of Lemma D.3. Consider first the case 𝜇 ≤ 1/𝑛 and 𝑢0 ∈ [𝑢𝐿0 (𝜇) , 𝑢𝐹𝐷0 (𝜇)), so that the equilibrium

payoff function is fully linear. The effective-value distribution 𝐻𝑖 implied by (𝑆3) has an atom 𝛼 at �̄� , an
4Note that failure of (𝑆4) ensures that �̂� < 1.
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atom (1 − 𝛼𝜇)(
𝑢0
�̂� )

1
𝑛−1 at 0, and a density

ℎ𝑖 (𝑤) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0 if 𝑤 < 𝑢0 and 𝑤 = (�̂� , �̄� ]

1−𝛼𝜇
(𝑛−1)�̂�

1
𝑛−1

𝑤− 𝑛−2
𝑛−1 if 𝑤 ∈ [𝑢0, �̂� ]

.

Below, we construct a mixed strategy that generates this effective value distribution. To this end, define a

mapping 𝛾 ∶ [ ̄
𝑈 , �̂� ] → [0,

̄
𝑈 ] by

𝐾 (𝛾 (𝑈 )) = 𝐾 (𝑈 ) for 𝑈 ≤ �̃� , and 𝛾 (𝑈 ) = 0 for 𝑈 ≥ �̃� ,

where𝐾 ∶ [0, �̄� ] → ℝ is defined as𝐾 (𝑤) ≡ (𝑛
̄
𝑈 − 𝑤)𝑤

1
𝑛−1 , �̃� > 𝑢0 is defined implicitly by𝐾 (�̃� ) = 𝐾 (𝑢0),

and parameters 𝛼 and �̂� are as given in Lemma D.2. For each 𝑈 ∈ [ ̄
𝑈 , �̂� ], let 𝐹 (⋅;𝑈 ) be the binary

distribution with support {𝛾 (𝑈 ) , 𝑈 } and mean
̄
𝑈 and let 𝐹 (⋅; �̄� ) be the binary distribution with support

{
0, �̄�

}
and mean

̄
𝑈 . Moreover, let 𝐺 be a reservation-value distribution that has an atom 𝛼 ∈ [0, 1] at �̄�

and a density as follows:

𝑔 (𝑈 ) ≡
1 − 𝛼𝜇

(𝑛 − 1) �̂�
1

𝑛−1

𝑈 − 𝛾 (𝑈 )

̄
𝑈 − 𝛾 (𝑈 )

𝑈 − 𝑛−2
𝑛−1 , for 𝑈 ∈ [ ̄

𝑈 , �̂� ] .

Below, we show that the mixed strategy

(𝐺,
{
𝐹 (⋅;𝑈 ) ∶ 𝑈 ∈ [ ̄

𝑈 , �̂� ] ∪
{
�̄�
}}

) ,

generates the effective-value distribution 𝐻𝑖 defined above.

We need to establish that the effective-value distribution 𝐹 (⋅;𝑈 ) is inducible for each 𝑈 ∈ [ ̄
𝑈 , �̂� ] ∪

{
�̄�
}
. First, the mapping 𝛾 is well-defined: a direct computation reveals that 𝐾 (𝑤) is strictly concave with

its peak at
̄
𝑈 . Moreover, we can show that 𝛾 (𝑈 ) ≤ 𝑎 (𝑈 ) ≡ 𝜇−𝑐−𝜇𝑈

1−𝑐−𝑈 . For this purpose, it is without loss to

suppose 𝑢0 = 0, as 𝛾 (𝑈 ) defined above is weakly decreasing in 𝑢0. Because 𝑎 ( ̄𝑈 ) = 𝛾 (
̄
𝑈 ), 𝛾 (�̂�) = 0 =

𝑎 (�̄� ) ≤ 𝑎 (�̂�), and 𝑎 (𝑈 ) is decreasing and strictly concave, it suffices to show that 𝛾 (𝑈 ) is convex. To

this end, we adopt a change of variable: let 𝑣 = 𝑈 −
̄
𝑈 , and 𝑑 (𝑣) =

̄
𝑈 − 𝛾 (

̄
𝑈 + 𝑣). The implicit definition

of 𝛾 implies 𝐾 (
̄
𝑈 + 𝑣) = 𝐾 (

̄
𝑈 − 𝑑 (𝑣)), or equivalently,

(
̄
𝑈 + 𝑣)

1
𝑛−1 ((𝑛 − 1)

̄
𝑈 − 𝑣) = (

̄
𝑈 − 𝑑 (𝑣))

1
𝑛−1 ((𝑛 − 1)

̄
𝑈 + 𝑑 (𝑣)) .

The rest of the argument coincides with that in Lemma 4.2 in the text (after replacing 𝑀 with
̄
𝑈 ).

We now check that the mixed strategy generates an effective-value distribution coinciding with 𝐻𝑖

stated above. For 𝑤 ∈ [ ̄
𝑈 , �̃� ], the density implied by the mixed strategy is

𝑔 (𝑤) × ̄
𝑈 − 𝛾 (𝑤)
𝑤 − 𝛾 (𝑤)

=
1 − 𝛼𝜇

(𝑛 − 1) �̂�
1

𝑛−1

𝑤 − 𝛾 (𝑤)

̄
𝑈 − 𝛾 (𝑤)

𝑤− 𝑛−2
𝑛−1 × ̄

𝑈 − 𝛾 (𝑤)
𝑤 − 𝛾 (𝑤)

= ℎ𝑖 (𝑤) .
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For 𝑤 ∈ [�̃� , �̂� ], the density implied by the mixed strategy is

𝑔 (𝑤) × ̄
𝑈
𝑤

=
1 − 𝛼𝜇

(𝑛 − 1) �̂�
1

𝑛−1

𝑤

̄
𝑈
𝑤− 𝑛−2

𝑛−1 × ̄
𝑈
𝑤

= ℎ𝑖 (𝑤) .

Define 𝑞∶ [0,
̄
𝑈 ] → [ ̄

𝑈 , �̂� ] as the inverse mapping of 𝛾 . For𝑤 ∈ [𝑢0, ̄
𝑈 ], the density implied by the mixed

strategy is

−𝑞′ (𝑤) ×
𝑞 (𝑤) −

̄
𝑈

𝑞 (𝑤) − 𝑤
× 𝑔 (𝑞 (𝑤)) = −

𝐾 ′ (𝑤)
𝐾 ′ (𝑞 (𝑤))

×
𝑞 (𝑤) −

̄
𝑈

𝑞 (𝑤) − 𝑤
× 𝑔 (𝑞 (𝑤))

= −
𝑛

𝑛−1 ( ̄
𝑈 − 𝑤)𝑤

1
𝑛−1−1

𝑛
𝑛−1 ( ̄

𝑈 − 𝑞 (𝑤)) 𝑞 (𝑤)
1

𝑛−1−1
×
𝑞 (𝑤) −

̄
𝑈

𝑞 (𝑤) − 𝑤
×

1 − 𝛼𝜇
(𝑛 − 1) �̂�

1
𝑛−1

𝑞 (𝑤) − 𝑤

̄
𝑈 − 𝑤

𝑞 (𝑤)−
𝑛−2
𝑛−1

=
𝑤

1
𝑛−1−1

𝑞 (𝑤)
1

𝑛−1−1
× ̄

𝑈 − 𝑤
𝑞 (𝑤) − 𝑤

×
1 − 𝛼𝜇

(𝑛 − 1) �̂�
1

𝑛−1

𝑞 (𝑤) − 𝑤

̄
𝑈 − 𝑤

𝑞 (𝑤)−
𝑛−2
𝑛−1

=
1 − 𝛼𝜇

(𝑛 − 1) �̂�
1

𝑛−1
× 𝑤− 𝑛−2

𝑛−1 = ℎ𝑖 (𝑤)

.

The atom at 0 is given by

𝛼 (1 − 𝜇) + ∫
�̂�

�̃� (1 − ̄
𝑈
𝑈 ) 𝑑𝐺 (𝑈 ) = 𝛼 (1 − 𝜇) + ∫

�̂�

�̃� (1 − ̄
𝑈
𝑤) ×(

1 − 𝛼𝜇
(𝑛 − 1) �̂�

1
𝑛−1

𝑤

̄
𝑈
𝑤− 𝑛−2

𝑛−1
) 𝑑𝑤

= 𝛼 (1 − 𝜇) +
1 − 𝛼𝜇
𝑛
̄
𝑈 �̂�

1
𝑛−1

(−(𝑛 ̄
𝑈 − �̂�) �̂�

1
𝑛−1 + (𝑛 ̄

𝑈 − �̃� ) �̃�
1

𝑛−1)

= 𝛼 (1 − 𝜇) +
1 − 𝛼𝜇
𝑛
̄
𝑈 �̂�

1
𝑛−1

(−(𝑛 ̄
𝑈 − �̂�) �̂�

1
𝑛−1 + (𝑛

̄
𝑈 − 𝑢0) 𝑢

1
𝑛−1
0 )

= 𝛼 (1 − 𝜇) + (1 − 𝛼𝜇)(−(1 −
(1 − 𝛼𝜇)𝑛−1

𝑛𝑣 ) +(1 −
𝛽𝑛−1

𝑛𝑣 )
𝛽

1 − 𝛼𝜇)

= 𝛽 +
(1 − 𝛼𝜇)𝑛 − 𝛽𝑛 − (1 − 𝛼) 𝑛𝑣

𝑛𝑣
= 𝛽

.

where the first equality uses the definition of 𝑔, the third equality uses the definition of �̃� , the fourth

equality uses the linearity of the payoff function: 𝑣/
̄
𝑈 = 𝛽𝑛−1/𝑢0 = (1 − 𝛼𝜇)𝑛−1 /�̂� , and the last equality

uses the fact that 𝑣 = 1−𝛽𝑛
𝑛 and 𝑣 = 1−(1−𝛼𝜇)𝑛

𝑛𝛼 (in the case 𝛼 > 0).

Consider next the case 𝜇 > 1/𝑛 and 𝑢0 ∈ [0, 𝑢𝐿0 (𝜇)), so that the equilibrium payoff function is semi-

linear. The effective-value distribution 𝐻𝑖 implied by (𝑆2) has an atom 𝛼 at �̄� , an atom 𝛼 (1 − 𝜇) at 0, and a

density

ℎ𝑖 (𝑤) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

0 if 𝑤 < 𝑢0 and 𝑤 = (�̂� , �̄� ]

(1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1

(𝑛−1)(�̂�−𝑢0)
((𝛼 (1 − 𝜇))𝑛−1 + (1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1

�̂�−𝑢0
(𝑤 − 𝑢0))

− 𝑛−2
𝑛−1 if 𝑤 ∈ [𝑢0, �̂� ]

.
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Define a mapping 𝛾 ∶ [ ̄
𝑈 , �̂� ] → [0,

̄
𝑈 ] by 𝐾 (𝛾 (𝑈 )) = 𝐾 (𝑈 ), where 𝐾 ∶ [0, �̄� ] → ℝ is given by

𝐾 (𝑤) ≡ ((𝛼 (1 − 𝜇))𝑛−1 +
(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

�̂� − 𝑢0
(𝑤 − 𝑢0))

1
𝑛−1

×
(
𝑛
̄
𝑈 − (𝑛 − 1) 𝑢0 + (𝑛 − 1)(

(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

�̂� − 𝑢0 )

−1

(𝛼 (1 − 𝜇))𝑛−1 − 𝑤
)

,

and parameters 𝛼 and �̂� are as given in LemmaD.2. For each𝑈 ∈ [ ̄
𝑈 , �̂� ], let 𝐹 (⋅;𝑈 ) be a binary distribution

with support {𝛾 (𝑈 ) , 𝑈 } and mean
̄
𝑈 , and let 𝐹 (⋅; �̄� ) be the binary distribution with support

{
0, �̄�

}
and

mean
̄
𝑈 . Moreover, let 𝐺 be a reservation-value distribution that has an atom 𝛼 ∈ [0, 1] at �̄� and density

𝑔 (𝑈 ) ≡
(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

(𝑛 − 1)(�̂� − 𝑢0)
((𝛼 (1 − 𝜇))𝑛−1 +

(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

�̂� − 𝑢0
(𝑈 − 𝑢0))

− 𝑛−2
𝑛−1

×
𝑈 − 𝛾 (𝑈 )

̄
𝑈 − 𝛾 (𝑈 )

, for 𝑈 ∈ [ ̄
𝑈 , �̂� ]

.

We need to establish that effective-value distribution 𝐹 (⋅;𝑈 ) is inducible for each 𝑈 ∈ [ ̄
𝑈 , �̂� ] ∪

{
�̄�
}
.

First, the mapping 𝛾 is well-defined: a direct computation reveals that 𝐾 (𝑤) is strictly concave with its

peak at
̄
𝑈 and that 𝐾 (�̂�) = 𝐾 (𝑢0). Moreover, we can show that 𝛾 (𝑈 ) ≤ 𝑎 (𝑈 ) ≡ 𝜇−𝑐−𝜇𝑈

1−𝑐−𝑈 . To this end,

note that because 𝑎 (
̄
𝑈 ) = 𝛾 (

̄
𝑈 ), 𝛾 (�̂�) = 𝑢0 ≤ 𝑎 (�̂�),

5 and 𝑎 (𝑈 ) is decreasing and strictly concave,

it suffices to show that 𝛾 (𝑈 ) is convex. To this end, we adopt a change of variable: let 𝑣 = 𝑈 −
̄
𝑈 , and

𝑑 (𝑣) =
̄
𝑈 − 𝛾 (

̄
𝑈 + 𝑣). The implicit definition of 𝛾 implies 𝐾 (

̄
𝑈 + 𝑣) = 𝐾 (

̄
𝑈 − 𝑑 (𝑣)), or equivalently,

(𝐿 + 𝑣)
1

𝑛−1 ((𝑛 − 1) 𝐿 − 𝑣) = (𝐿 − 𝑑 (𝑣))
1

𝑛−1 ((𝑛 − 1) 𝐿 + 𝑑 (𝑣)) ,

where 𝐿 ≡ (
̄
𝑈 − 𝑢0) +

(�̂�−𝑢0)(𝛼(1−𝜇))
𝑛−1

(1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1 . The rest of the argument coincides with that for Lemma 4.2 in the

text (after replacing 𝑀 with 𝐿).

Let us now check that the mixed strategy generates an effective-value distribution coinciding with 𝐻𝑖

stated above. For 𝑤 ∈ [ ̄
𝑈 , �̂� ], the density implied by the mixed strategy is

𝑔 (𝑤) × ̄
𝑈 − 𝛾 (𝑤)
𝑤 − 𝛾 (𝑤)

=
(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

(𝑛 − 1)(�̂� − 𝑢0)
((𝛼 (1 − 𝜇))𝑛−1 +

(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

�̂� − 𝑢0
(𝑤 − 𝑢0))

− 𝑛−2
𝑛−1

×(
𝑤 − 𝛾 (𝑤)

̄
𝑈 − 𝛾 (𝑤))( ̄

𝑈 − 𝛾 (𝑤)
𝑤 − 𝛾 (𝑤))

= ℎ𝑖 (𝑤)

.

5The reason is as follows. The derivation in Lemma D.2 reveals that �̂� ≤ �̄� in this parameter range, including the case 𝑢0 = 0,

so 𝛾 −1 (0) ≤ �̄� . Moreover, we have established in the case of the fully-linear equilibrium above that 𝛾 (�̂�) ≤ 𝑎 (�̂�) holds at

𝑢0 = 𝑢𝐿
0 (𝜇), so 𝛾 −1 (𝑢𝐿

0 (𝜇)) ≤ 𝑎−1 (𝑢𝐿
0 (𝜇)). Furthermore, for all 𝑢0 ∈ [0, 𝑢𝐿

0 (𝜇)), �̂� varies linearly with 𝑢0. Together with the fact

that 𝑎 is strictly concave, we have 𝛾 −1 (𝑢0) < 𝑎−1 (𝑢0) for all 𝑢0 ∈ [0, 𝑢𝐿
0 (𝜇)).
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Let 𝑞 be the inverse mapping of 𝛾 . For 𝑤 ∈ [𝑢0, ̄
𝑈 ], the density implied by the mixed strategy is

− 𝑞′ (𝑤) ×
𝑞 (𝑤) −

̄
𝑈

𝑞 (𝑤) − 𝑤
× 𝑔 (𝑞 (𝑤))

= −
𝐾 ′ (𝑤)

𝐾 ′ (𝑞 (𝑤))
×
𝑞 (𝑤) −

̄
𝑈

𝑞 (𝑤) − 𝑤
× 𝑔 (𝑞 (𝑤))

= −
(
̄
𝑈 − 𝑤)((𝛼 (1 − 𝜇))𝑛−1 + (1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1

�̂�−𝑢0
(𝑤 − 𝑢0))

− 𝑛−2
𝑛−1

(
̄
𝑈 − 𝑞 (𝑤))((𝛼 (1 − 𝜇))𝑛−1 + (1−𝛼𝜇)𝑛−1−(𝛼(1−𝜇))𝑛−1

�̂�−𝑢0
(𝑞 (𝑤) − 𝑢0))

− 𝑛−2
𝑛−1

×
𝑞 (𝑤) −

̄
𝑈

𝑞 (𝑤) − 𝑤
× 𝑔 (𝑞 (𝑤))

=
(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

(𝑛 − 1)(�̂� − 𝑢0)
((𝛼 (1 − 𝜇))𝑛−1 +

(1 − 𝛼𝜇)𝑛−1 − (𝛼 (1 − 𝜇))𝑛−1

�̂� − 𝑢0
(𝑤 − 𝑢0))

− 𝑛−2
𝑛−1

= ℎ𝑖 (𝑤)

.

■

The introduction of a relevant outside option allows us to investigate factors that can affect industry

profits. Interestingly, industry profits can be hurt not only by an increase in the consumer’s search cost 𝑐,

but also by an improvement in the average product quality 𝜇. These comparative statics illustrate nicely

the signal’s dual role of attraction and persuasion. On the one hand, an improvement in 𝜇 facilitates

persuasion, as it lifts the posterior quality realization on average. In fact, it is easy to see that absent any

competition, a firm would unambiguously benefit from having a higher 𝜇, as it would allow the firm to

increase the probability of realizing a posterior quality above 𝑢0. On the other hand, with a higher 𝜇, the

signal’s role as an instrument of attraction becomes ever more important, as the chance that the consumer

visits low-ranking firms dwindles. A higher average quality thus incites more aggressive information

revelation–which harms profits–by lowering the probability that the consumer makes a purchase. We find

that the former effect is more important when 𝜇 is relatively low, but the latter effect dominates when 𝜇 is

relatively high.

A standard prediction from the literature on random consumer search (e.g., Wolinsky (1986) and An-

derson and Renault (1999)) is that a higher search cost increases profits, as it raises the likelihood that

consumers stop and purchase conditional on visiting a firm, thus softening the market competition. In our

setting, the firms’ signal choices direct the consumer’s search, and an increase in the search cost is bad

news for the firms, as the consumer is less willing to visit them in the first place. In equilibrium, firms

respond by disclosing more aggressively, which results in a higher likelihood that the consumer takes up

her outside option, and thus lower industry profits.

Corollary D.4. (i) Suppose 𝑢0 < 𝜇𝐹𝐷 − 𝑐. There exists a 𝜇∗ < 𝜇𝐹𝐷 such that a firm’s equilibrium profit is

increasing in 𝜇 for all 𝜇 < 𝜇∗, and decreasing in 𝜇 for 𝜇 ∈ (𝜇∗, 𝜇𝐹𝐷).
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(ii) A firm’s equilibrium profit is weakly decreasing in the consumer’s search cost 𝑐, strictly so if 𝑢0 is in

some intermediate region.

Proof. (i) Fix a 𝑢0 < 𝜇𝐹𝐷 − 𝑐 and let 𝜇∗ be the unique solution to 𝑢𝐿0 (𝜇) = 𝑢0. We will show that a firm’s

equilibrium profit is increasing in 𝜇 when the equilibrium takes the fully linear form (i.e., 𝜇 < 𝜇∗) and is

decreasing in 𝜇 when the equilibrium takes the semi-linear form.

Consider first the case where the equilibrium payoff is fully linear. Recall from the proof of Lemma D.2

that a firm’s equilibrium profit 𝑣 is jointly determined by (𝑆5) and (𝑆10). As the RHS of (𝑆5) is decreasing

in 𝛽 and the RHS of (𝑆10) is increasing in 𝛽 , and because an increase in 𝜇 shifts up the RHS of (𝑆10), the

implied equilibrium payoff 𝑣 is therefore increasing in 𝜇.

Consider next the case where the equilibrium payoff is semi-linear. Recall from the proof of Lemma

D.2 that a firm’s equilibrium profit 𝑣 and the atom 𝛽 at the bottom is jointly determined by equating (𝑆5)

and (𝑆6), i.e., 𝑇 (𝛽, 𝜇) = 0, where

𝑇 (𝛽, 𝜇) ≡ (1 − 𝜇)
1 − (1 −

𝜇
1−𝜇 𝛽)

𝑛

𝑛𝛽
−
1 − 𝛽𝑛

𝑛
.

It is straightforward to verify that 𝑇 is strictly convex in 𝛽 , is positive at 𝛽 = 0 and equals 0 at 𝛽 = 1−𝜇.

The root that is smaller than 1−𝜇 thus gives the equilibrium value of 𝛽 . It is immediate that 𝑇 is increasing

in 𝜇, and so is the equilibrium value of 𝛽 .6 As the equilibrium payoff is decreasing in 𝛽 (recall (𝑆5)), it is

also decreasing in 𝜇.

(ii) The proof of LemmaD.2 implies the search cost 𝑐 has no impact on a firm’s profit 𝑣 if the equilibrium

payoff function is semi-linear, or if the equilibrium involves full disclosure. In the case of a fully-linear

equilibrium payoff, 𝑣 is jointly determined by (𝑆5) and (𝑆10). Evidently, (𝑆5) is independent of 𝑐 whereas

the RHS of (𝑆10) is decreasing in 𝑐. An increase in 𝑐 thus lowers the equilibrium value of 𝑣. ■

E Attraction Versus Persuasion for a Prior with a Density

In this section, we establish that the qualitative findings from Au andWhitmeyer (2021) extend to a setting

in which the consumer’s valuation is continuously distributed on some interval. As an illustration, in

6Direct computation shows that 𝑇 is increasing in 𝜇 if and only if (1 − 𝜇)(1 − (1 −
𝜇

1−𝜇 𝛽)
𝑛

) /𝑛𝛽 < (1 −
𝜇

1−𝜇 𝛽)
𝑛−1

holds for all

𝛽 ∈ (0, 1 − 𝜇). Letting 𝛼 = 𝛽/ (1 − 𝜇), the last inequality can be equivalently expressed as (1 − 𝛼𝜇)𝑛 + 𝑛𝛼 (1 − 𝛼𝜇)𝑛−1 − 1 > 0 for all

𝛼 ∈ (0, 1). The last inequality holds because its LHS is inverted U-shaped in 𝛼 , equal to 0 at 𝛼 = 0, and is positive at 𝛼 = 1 (as long

as 𝜇 < 𝜇𝐹𝐷).
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subsection E.1, we explore in detail the case in which the consumer’s prior for a product is uniformly

distributed on the unit interval.

Formally, let the consumer’s valuation for each firm 𝑖 be a random variable𝑋𝑖 drawn independently and

identically from some cumulative distribution function Φ = Φ𝑖 that is supported on [0, 1]. We assume that

Φ has a continuously differentiable density 𝜑, and that 𝜑′ is bounded (which, therefore, implies that 𝜑 is

bounded). The consumer has an outside option of 0, and sowe also impose that𝔼Φ [𝑋𝑖] ≥ 𝑐, since otherwise

a market would not exist (the consumer would take her outside option with probability 1, regardless of the

firms’ information provision policies).

Because the consumer is risk-neutral, each firm’s problem of choosing a signal is equivalent to one

in which it chooses a distribution over posteriors 𝐹 ∈ F (Φ), where F (Φ) is the set of mean-preserving

contractions of Φ. Our main result establishes that (i) if a pure strategy equilibrium exists, it must be one in

which firms induce the maximal reservation value; and (ii) such an equilibrium exists only if competition

is sufficiently fierce.

The maximal reservation value, �̄�Φ, is defined implicitly as

𝑐 = ∫
1

�̄�Φ
(𝑥 − �̄�Φ) 𝑑Φ (𝑥) .

Note that, in contrast to the binary prior setting, the maximal reservation value is not induced uniquely

by the prior Φ. Any mean-preserving contraction of Φ, 𝐹 , that is equal to Φ on [�̄�Φ, 1] induces �̄�Φ. Then,

Proposition E.1. (i) If there does not exist a symmetric pure-strategy equilibrium in which firms induce

the maximal reservation value, �̄�Φ, there exist no symmetric pure-strategy equilibria.

(ii) There exists a positive 𝑁 ∈ ℕ such that if 𝑛 ≥ 𝑁 there exists a unique symmetric pure strategy equilib-

rium in which each firm provides full information.

(iii) There exists a positive𝑀 ∈ ℕ (𝑀 ≤ 𝑁 ) such that if 𝑛 ≥ 𝑀 there exists a unique symmetric pure strategy

equilibrium in which each firm induces �̄�Φ.

Proof. The first statement is analogous to the corresponding result for a binary prior: in any purported

equilibrium inwhich each firm induces some reservation value𝑈 < �̄�Φ a firm can always deviate profitably

by providing slightly more information and moving to the top of the consumer’s search order.

Now let us prove the second statement. Because 𝜑′ is bounded, there exists a positive �̃� ∈ ℕ such

that for all 𝑛 ≥ �̃� , Φ𝑛−1 is convex on [0, �̄�Φ]. For all such 𝑛, no firm can deviate profitably by choosing

any distribution that induces reservation value �̄�Φ (this follows from Corollary 1 in Hwang, Kim, and

Boleslavsky (2018)).
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We now need to check whether a firm can deviate profitably by choosing a distribution that induces

a reservation value that is strictly less than �̄�Φ. For any such deviation, the firm will be visited last, so its

payoff as a function of its realized value, 𝑥 , is

𝑉 (𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

Φ (𝑥)𝑛−1 , if 0 ≤ 𝑥 ≤ �̄�Φ

Φ (�̄�Φ)
𝑛−1 , if �̄�Φ ≤ 𝑥 ≤ 1

.

If �̄�Φ ≤ 𝜇, providing no information is optimal. This yields a payoff of Φ (�̄�Φ)
𝑛−1. Because Φ (�̄�Φ) < 1

there exists a finite number �̂� such that for all 𝑛 ≥ �̂� , Φ (�̄�Φ)
𝑛−1 ≤ 1/𝑛.

If �̄�Φ > 𝜇 the deviator’s payoff is obviously bounded above by Φ (�̄�Φ)
𝑛−1 and so again, for all 𝑛 ≥ �̂�

there is no profitable deviation. We may define 𝑁 ≡ max
{
�̃� , �̂�

}
and conclude the second part of the

result.

If 𝑛 is such that Φ𝑛−1 is not convex on [0, �̄�Φ] then firms do not provide full information in a symmetric

pure-strategy equilibrium, which follows from Hwang, Kim, and Boleslavsky (2018). Instead (if such an

equilibrium exists) each firm chooses an 𝐹 that induces �̄�Φ such that 𝐹 is an alternating (𝑛 − 1)-MPC7 of Φ

and 𝐹 𝑛−1 is convex on [0, �̄�Φ]. This follows from Theorem 1 in Hwang, Kim, and Boleslavsky (2018). Note

that the portion of 𝐹 below �̄�Φ is unique. For the remainder of the proof, observe that by construction 𝐹 𝑛−1

is convex and so the previous analysis can be repeated. ■

This proposition highlights one special feature of the binary prior case; that the maximum reservation

value is induced uniquely by the prior. More generally, the level of competition required for firms to

provide full information in the (unique) symmetric equilibrium is weakly higher than that required for

them to induce the maximum reservation value. If there is a gap between these thresholds, in between

the firms fully reveal when the consumer’s match quality is above the maximum reservation value (each

firm’s distribution 𝐹 equals the prior, Φ, above �̄�Φ) but partially obfuscate match values below �̄�Φ.

E.1 Uniform Prior Example

Suppose the prior is the uniform distribution on the unit interval: Φ = U [0, 1] and that 𝑐 < 1/2. We find

that there exists an equilibrium in which firms provide full information for any number of firms 𝑛 ≥ 2.

Proposition E.2. For any number of firms 𝑛 ≥ 2 there exists a unique pure strategy equilibrium. Each firm

provides full information.
7Refer to Hwang, Kim, and Boleslavsky (2018) for a definition of this term.
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Proof. The maximal reservation is �̄�U = 1 −
√
2𝑐, which is easy to compute. Henceforth, we omit this

subscript. Because Φ𝑛−1 = 𝑥𝑛−1 is convex, no firm can deviate profitably by choosing another distribution

that induces �̄� (we dropped the subscript).

Accordingly, we need only check that a firm cannot deviate profitably by choosing a distribution that

induces a reservation value that is strictly less than �̄� . Its payoff as a function of its realized value is

𝑉 (𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥𝑛−1, if 0 ≤ 𝑥 ≤ 1 −
√
2𝑐

(1 −
√
2𝑐)

𝑛−1 , if 1 −
√
2𝑐 ≤ 𝑥 ≤ 1

.

If 1 −
√
2𝑐 ≤ 1/2, providing no information is optimal, which yields the payoff

(1 −
√
2𝑐)

𝑛−1 ≤ (
1
2)

𝑛−1
≤
1
𝑛
,

for all 𝑛 ≥ 2. Thus, there are no profitable deviations for 𝑐 sufficiently high. If 1 −
√
2𝑐 > 1/2, things

are a little trickier, but Dworczak and Martini (2019) provide the tools to establish the result. Indeed, the

corresponding price function (in their parlance) is

𝑃 (𝑥) ≡

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥𝑛−1, 0 ≤ 𝑥 ≤ 1 − 2
√
2𝑐

(1−√2𝑐)𝑛−1−(1−2
3
2
√
𝑐)

𝑛−1

√
2𝑐 𝑥 + (1 − 2

3
2
√
𝑐)

(𝑛−1)
−
(1−√2𝑐)𝑛−1(1−2

3
2
√
𝑐)−(1−2

3
2
√
𝑐)

𝑛

√
2𝑐 , 1 − 2

√
2𝑐 ≤ 𝑥 ≤ 1

.

This is depicted in Figure 1. Consequently, the deviator’s maximal payoff is

∫
1−2

√
2𝑐

0
𝑥𝑛−1𝑑𝑥 + 2

√
2𝑐 (1 −

√
2𝑐)

𝑛−1 = (1 − 2
√
2𝑐)

𝑛

𝑛
+ 2

√
2𝑐 (1 −

√
2𝑐)

𝑛−1 ≤
1
𝑛
,

which concludes the proof. ■
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