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Abstract

We study competitive disclosure of information on idiosyncratic product quality by two
firms to a rationally inattentive consumer. Unless attention costs are low, there is an
equilibrium in which the firms provide the consumer with as much information as she
would process if she controlled information provision. This is not true if there is only
one firm. We identify a novel channel through which the interaction of competition and
inattention encourages information disclosure: information on one firm substitutes for
information on the other, rendering a unilateral withholding of information unprofitable.
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Constant attention wears the active mind,
Blots out our powers, and leaves a blank behind.

Charles Churchill
Epistle to William Hogarth

1 Introduction

Firms often seek to alter buyers’ perceptions of the quality of their products by strategically
controlling the availability of information. For instance, they can set policies on how long a
consumer can try a product or how customer reviews posted online are moderated. However,
products often have complex features and processing information about them can entail
substantial investment of time and cognitive resources. It is natural to expect that firms,
when crafting their information disclosure strategies, account for the fact that merely making
information available may not suffice to influence beliefs–consumers must find it in their
interest to invest in processing that information.

In this paper, we study how much information about product quality is disclosed by two
firms that compete to sell to a consumer who is known to be rationally inattentive, in that she
endogenously chooses how much information about each firm to process, at a cost increasing
in the amount of information. A firm’s disclosure decision thus places an upper bound, but
not a lower bound, on the information a consumer obtains.

A key implication of the consumer’s information processing costs is that it might not be
optimal for her to become certain of either firm’s quality, even when such precise information
is available (and can be processed at a finite cost). As a result, even if both firms provide
perfectly accurate information on the quality of their respective products, the consumer might
rationally ignore some of each firm’s information. We refer to the amount of information
(aggregated across firms) that the consumer optimally processes in this scenario as her
first-best level of information.

Naturally, by withholding information, either firm might be able to prevent the consumer
from achieving this first-best. That is, a firm might be able to force the consumer to operate
under a higher degree of uncertainty about product quality than she would like. The main
question we ask in this paper is whether there is an equilibrium in which firms choose not to
withhold information in this manner.

We find that as long as information processing costs and the prior uncertainty about the
senders’ types are not too low, the answer is yes. Namely, it is an equilibrium for the firms
to provide the consumer with as much information as she would process if she had potential
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access to full information. Further, any symmetric equilibrium in a natural class of strategies
is shown to be outcome equivalent to this equilibrium.

Prior literature has shown that the receiver is not provided with her first-best level of
information in two benchmark scenarios: first, where information processing is costless;
second, where information processing is costly but there is only one firm. Thus, both
ingredients–competition and information processing costs–are critical for our results, and
the key contribution of this paper is to uncover the strategic forces that lead to this. In
particular, we illuminate the role played by substitutability of information sources: highly
precise information on one firm diminishes the value of information about the other.

Our second main result–which is a consequence of the first–is that the presence of
information processing costs may actually lead a consumer to ultimately process more
information (and therefore select the better firm with a higher probability). This suggests
that a regulator who wishes to promote the purchase of better quality products should be
cautious in assessing the implications of costly attention.

Our model is useful to understand how firms interact not only with individual consumers,
but also with specialists. Consider, for instance, the situation encountered by doctors and
pharmaceutical companies. Patients rely on their doctors to make important medical decisions
for them, such as the decision of which medication to take. Often, multiple drugs exist to
treat the same condition, but nevertheless differ in subtle ways that can prove crucial for
patients. Pharmaceutical companies conduct clinical trials to produce information on the
safety and efficacy of their drugs, and make this information available to doctors through
articles in medical journals, promotional pamphlets etc. Although they are prohibited from
falsifying facts, they may strategically decide how much information to reveal and in what
form. For example, some important but subtle details–such as whether adverse side effects
had led many clinical trial subjects of a certain demographic group to drop out midway–may
be omitted or buried in footnotes. Such situations are ubiquitous in present times, when
doctors find themselves inundated with information on COVID-19 treatments and vaccines.

A well-intentioned doctor has her task clearly cut out–she should study all published
material made available to her, and let that information guide her prescription decisions.
However, absorbing all details involves substantial time and effort, and doctors typically
find it difficult to keep up. Tellingly, Alper et al. (2004) find that it would take a doctor six
hundred hours to skim all research relevant to general practice that is published in just one
month. Consequently, they are likely to, e.g., pay attention only to some published summary
statistics, and skip the kinds of subtle details referenced earlier.

Pharmaceutical companies, when choosing their disclosure strategies, take into consid-
eration the lack of attention on the part of the recipients: they may design pamphlets in a
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way that the most favorable pieces of evidence stand out, or other strategies of that ilk. As
Goldacre (2014) explains, “They (doctors) need good quality information, but they need it,
crucially, under their noses. The problem of the modern world is not information poverty, but
information overload...So doctors will not be going through every trial, about every treatment
relevant to their field...They will take shortcuts, and these shortcuts can be exploited [emphasis
added].”

In our baseline model, there are two senders (e.g. firms), each with a stochastic binary
type (quality or match value) drawn independently.1 Before acquiring any private information,
each of them decides how much information to disclose about his own type.2 Rather than
impose a specific (and inevitably restrictive) information generation technology, we follow the
influential work of Kamenica and Gentzkow (2011) in allowing flexible choice of disclosure
rules. This simply means that each sender may choose any Blackwell experiment, which
corresponds to a distribution of posterior beliefs whose average is the prior belief.

There is a receiver (e.g. consumer or doctor), who wishes to choose the sender with
the higher type. She visits the senders sequentially, and chooses the order of visits after
observing how informative each sender’s disclosure rule is. Upon visiting the first sender, she
may choose to acquire less precise, or coarser, information than what is available. Formally,
she is free to choose any mean preserving contraction–or garbling–of the sender’s Blackwell
experiment, and a draw from that garbling determines her posterior belief about that sender.

The reason she might want to undertake this garbling is that obtaining more precise
information is costly: her attention costs are lower for a less informative garbling. Think
back to the doctor example, and the shortcuts she might take: she could read just the first
few pages of an article, only the nontechnical parts, only the technical sections, or even just
the title. All of these correspond to different levels of information, and all of these impose on
the receiver different costs–a grueling slog through a complicated model takes more out of
the receiver than does a quick skim of the conversational portions.

With the first posterior in hand, the receiver visits the second sender and follows the same
protocol: she chooses a garbling of that sender’s chosen experiment subject to an information
cost. Finally, she selects the sender favored by her posterior beliefs. Each sender wants to
maximize the probability of being selected.

As we show, the receiver’s learning strategy has an intuitive feature that drives our
analysis: it can happen that she will have “seen enough” at the first sender and need not
learn anything about the second sender–she might be so optimistic about the first sender
that she selects him without learning further, and she may be so pessimistic that she chooses

1Our focus is on the strategic provision of information (on quality), and so we exogenously fix prices at 0 .
2Note in particular that a sender has no control over information about his competitor.
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the second, sight unseen. Returning to the example: if a doctor is fairly certain that drug A

is of low quality, then she would be willing to prescribe drug B without learning anything
about it, and vice-versa.

In this setting, a pertinent benchmark is what the receiver would do if she had potential
access to full information on each sender, so that attention costs were the only factor
potentially limiting her learning.3 We show that in this case–the first-best scenario for her–she
would always learn something from at least one sender, but never learn any sender’s type
with certainty. Furthermore–and this is crucial–fixing any prior, for a high enough attention
cost parameter, it is optimal for her to learn from exactly one sender.

We ask whether in our game with strategic senders, there is an equilibrium in which
senders might voluntarily provide as much information as the receiver would acquire in her
first-best scenario; and find that the answer is yes under general conditions. In particular, for
any prior, there is such an equilibrium4 as long as an attention cost parameter is above a
threshold.5 Our analysis produces a sharp economic insight into why a combination of these
ingredients–competition and attention costs–gives us more information disclosure. Recall our
observation that for high enough costs it is optimal for the receiver to learn from exactly one
sender. Now suppose that the sender from whom she plans to learn unilaterally deviates and
restricts her learning. Then, since the other sender continues to provide full information,
the receiver could just switch to learning from him instead. Her ex ante payoffs, and the
probability of choosing correctly between the senders, would remain unaffected. Since a
sender’s payoffs ultimately depend only on this probability, the deviation ends up being
unprofitable for him.

The result is driven by the fact that for the receiver, the two sources of information are
partial substitutes, and due to attention costs she never learns fully from either source. Then,
in the event of a unilateral provision of less information by one sender, she has the option of
paying more attention to the non-deviating sender. In a large range of circumstances, she is
able to do so in way that maintains the likelihood of choosing correctly between the senders.
As discussed ahead, this insight is novel in the literature.

1.1 Related Literature

Our work relates thematically to several strands of the literature.
3This is equivalent to an environment where the receiver could herself control how much information is

provided by senders.
4In fact, there is a continuum of such equilibria and they are all equivalent not only in terms of receiver

payoffs, but also in terms of sender payoffs.
5Equivalently, fixing attention costs above a threshold, this is true over an interior interval of prior means.

The interval expands as attention costs grow, and approaches the full range as they explode.
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Rational inattention: Since in our model, the receiver’s decision to garble a sender’s
experiment is the result of an optimization problem that accounts for attention costs, she is
rationally inattentive as in the economics literature pioneered by Sims (2003). Mackowiak
et al. (2021) provide an excellent review of this literature and its wide range of applications.

Information disclosure by a single sender to a rationally inattentive agent: The specific
framework of rational inattention that we adopt follows Lipnowski et al. (2020a) and Lipnowski
et al. (2020b). These papers consider the problem of a principal whose preferences over
actions are perfectly aligned with those of an agent who privately bears a cost of paying
attention. The former paper establishes conditions under which the principal would want
to restrict the agent’s information in order to manipulate her attention. The latter imposes
more structure on the problem and characterizes the principal’s optimal disclosure rule.

Wei (2020) extends this analysis to an environment with preference misalignment between
the principal and the agent. He considers a binary-type, binary-action model with a single
principal who has state independent preferences and an exogenous threshold of acceptance
for the agent. He finds that the principal restricts the agent’s learning below her first-best
level. In the present paper, we show how competitive forces change this.

Bloedel and Segal (2021) take a different approach to a problem similar to Wei’s. In their
framework, after observing the sender’s experiment, but before seeing its realization, the
receiver can choose a mapping from signal realizations to distributions over “perceptions,”
incurring an entropy reduction cost. The receiver observes the realized perception but not the
actual signal realization. As Lipnowski et al. (2020a) explain, this is conceptually different
from our paper (and theirs), since the receiver in our model pays a cost to reduce uncertainty
about the state, and not the sender’s message. Matyskova and Montes (2021) study a
persuasion model where the receiver, after observing the sender’s signal realization, can
acquire additional information on the state at a cost proportional to the reduction in entropy.

Competitive information disclosure without rational inattention: Our work is also closely
related to papers on competitive information design without any attention costs. With two
senders, this has been studied by Boleslavsky and Cotton (2015), who identify the unique
equilibrium (which restricts the receiver’s welfare below her first-best level).6

Au and Whitmeyer (2021) extend the competitive persuasion scenario to a sequential
(directed) search setting, and allow for fixed search (visit) costs. They find that search costs
may encourage information provision by the sellers because firms compete to be visited first.

6Some other papers in the competitive information design literature that bear mentioning are Au and
Kawai (2020), Boleslavsky and Cotton (2018) and Albrecht (2017). The result that competition encourages
information disclosure is familiar from Au and Kawai (2020), but introducing information processing costs
suggests a completely different channel for why this might be true: the fact that multiple information sources
serve as substitutes matters only in the presence of information processing costs.
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In contrast, we find that information processing costs enable the consumer to make a credible
threat that sustains a highly informative equilibrium–if a seller deviates, the consumer will
learn nothing from him, rendering that deviation unprofitable.

Board and Lu (2018) also look at sellers competing through information to entice buyers.
However, there, the number of sellers is uncountable, search is random (and so the order of
visits is not endogenously chosen), and the decision by a seller of what information to disclose
is made upon the buyer’s visit. Moreover, the value of each seller’s goods to the buyer are
perfectly correlated whereas here they are independent.

Costs borne by sender: Gentzkow and Kamenica (2014) look at optimal persuasion
mechanisms when a single sender pays higher costs (proportional to entropy reduction) of
designing more informative experiments. Le Treust and Tomala (2019) consider constraints
on the sender’s information transmission channel and find that the sender’s payoff from the
optimal solution is the concave closure of his payoff function, net of entropy reduction costs.
Thus, these costs arise endogenously in their model.

The rest of this paper is organized as follows. Section 2 presents our baseline model, which
is analyzed in Section 3. Section 4 compares our main results to two benchmarks. Section
5 discusses how the receiver’s welfare varies with attention costs. Section 6 illustrates the
robustness of our results to three modifications of the baseline model: one where the senders
are ex ante heterogeneous, one where attention costs directly depend on senders’ disclosure
rules, and one where each sender’s type is an arbitrary real-valued random variable and the
receiver is risk-neutral. Section 7 concludes. The appendix contains omitted proofs.

2 Baseline Model

There are two senders indexed by i ∈ {1, 2}, and a receiver. Sender i has type ωi ∈
Ωi := {0, 1}, with the types being drawn independently. The common prior belief is that
Pr(ωi = 1) = µ ∈ (0, 1) for i ∈ {1, 2}.

The receiver has to select one of the two senders, and she has no outside option.7 Her
payoff is equal to the type of the selected sender, minus attention costs that we elaborate on
below. Sender i’s payoff is 1 if he is selected, and 0 if not. All players maximize expected
payoffs. The game proceeds in the following 3 stages.

Stage 0: Each (ex ante uninformed) sender simultaneously commits to a Blackwell
experiment that generates information about his own type. Such an experiment is a mapping
from {0, 1} to the set of Borel probability measures over a compact metric space of signal
realizations. Each signal realization, then, is associated with a posterior belief distribution on

7Our results continue to hold with a low, positive outside option.

6



{0, 1}, and an experiment induces a distribution over posterior beliefs. Hereafter, we identify
a posterior belief with the belief on ωi = 1.

From the work of Kamenica and Gentzkow (2011), we know that the set of Blackwell
experiments is isomorphic to the set of distributions of posterior beliefs whose average is
the prior. Thus, at this stage 0, Sender i commits to a distribution pi ∈ ∆[0, 1], with∫
[0,1]

x dpi(x) = µ.
Stage 1: The receiver observes each sender’s choice of experiment (but not its realization8)

and decides which sender to visit first. Say she visits Sender 1 first. Then she is free to choose
any q1 ∈ ∆[0, 1] that is a mean preserving contraction (or garbling) of p1.9 She takes a draw
from q1, which determines her posterior belief about Sender 1; and incurs an attention cost
proportional to the variance of her posterior belief:

C(q1) = k

∫
[0,1]

(x− µ)2dq1(x), (1)

where k > 0. Note that costs depend on q1 and not directly on p1. We defer a discussion of
these costs to Section 2.1.1.

Stage 2: The receiver then visits the other sender (say Sender 2) and chooses a garbling
q2 of p2, once again incurring an attention cost C(q2). She takes a draw from q2, which
determines her posterior belief about this sender. Finally, she selects a sender and her payoff
is equal to the type of the selected sender. She may select a sender even if she learned nothing
about him, i.e., if she chose the uninformative garbling of his distribution.

Figure 1 summarizes the sequence of moves in the game.
Notice that the receiver’s optimal garbling at stage 2 potentially depends on the belief she

draws at stage 1. That is, she may be more or less inclined to learn about the second sender,
depending on how much uncertainty has already been resolved about the first one. Indeed,
as we shall see, if the stage 1 belief is close enough to 0 or 1, she chooses not to learn at all
at stage 2, and this fact plays a crucial role in our analysis. Note also that the distribution
offered by the sender visited first dictates how much can be learned at stage 1. Then in light
of the preceding observation, if both senders offer different distributions, the choice of whom
to visit first matters for payoffs.

Before proceeding, we point out the following characterization of the set of garblings
of a binary distribution, which we shall extensively use:

q is a garbling of a distribution with support {ν1, ν2} ⇐⇒ supp(q) ⊆ [min {ν1, ν2} ,max {ν1, ν2}].
8In fact, one can think that realizations from the senders’ experiments are never drawn.
9q is a garbling of p if the random variable associated with q second order stochastically dominates–and

has the same mean as–the random variable associated with p. It is a strict garbling if additionally q ̸= p.
Trivially, the receiver always has the option of choosing q1 = p1 or q1 = δµ.
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Each sender si-
multaneously and
publicly commits
to a distribution.

Receiver decides
which sender to visit

first, and say she
chooses sender i.

Chooses garbling of
i’s distribution, which
determines attention
cost. Draws posterior

from garbling.

Visits sender j.

Chooses garbling of
j’s distribution, which
determines attention
cost. Draws posterior

from garbling.
Selects a sender.

Figure 1: Sequence of moves

Strategies and solution concept. A pure strategy for Sender i is a choice of a
distribution pi ∈ ∆[0, 1] with mean µ. A pure strategy for the receiver consists of the
following for each pair of distributions offered by the senders: i) a choice of which sender to
visit first; ii) a choice of garbling of the first sender’s distribution; iii) a choice of garbling for
the second sender’s distribution for each belief that can be drawn about the first sender; iv)
a choice of which sender to select at the end for each pair of posterior beliefs that can be
drawn.

We assume that if the receiver holds the same belief about both senders, she selects each
of them with equal probability.10 We also restrict senders to pure strategies and disallow
the receiver from mixing over garblings–this eases notation but does not have substantive
implications for our results.

In equilibrium, we require the receiver’s beliefs to be given by Bayes’ rule where possible,
and for every player’s behavior to be sequentially rational. Further, we impose a condition
similar in spirit to the “no-signaling-what-you-don’t-know” condition (defined by Fudenberg
and Tirole (1991) for multi-period games with observed actions): upon learning that a sender
has deviated, the receiver does not update her belief about either sender’s type.

2.1 Discussion of modeling choices

2.1.1 Attention costs

Attention costs, in our framework, are costs incurred to process information on a sender’s type.
Through his choice of a Blackwell experiment, a sender can control how much information on
his type is available–in other words, he can put a cap on what can be learned. But a recipient
may choose to ignore some of that information and take a draw from a less informative
experiment, thereby reducing attention costs. For instance, a pharmaceutical company can
decide how much research on its drug to publish, but a doctor might choose to read a subset
of that. Her costs would depend on how much of the research she chooses to read, not on

10We need not assume anything about the tie-breaking rule for our main analysis, but we do so to maintain
consistency with other papers on competitive persuasion which serve as a benchmark.
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how much was published. In particular, both the act of understanding how much information
is available, and the act of garbling, are per se costless.

To capture this notion, we posit an attention cost function that takes as input only
the distribution from which the receiver draws her posterior belief.11 Accordingly, the cost
specified by equation 1 is simply proportional to the variance of the posterior belief under
the receiver’s chosen garbling.12

This cost function is posterior separable as in Caplin et al. (2019). That is, associated
with each posterior x is a cost k(x− µ)2, so that more precise beliefs–those that are further
away from the prior–cost more, and this is integrated to determine the cost of a distribution
of posteriors.

Since k(x− µ)2 is strictly convex, by Jensen’s inequality we have

q is a garbling of p =⇒ C(q) ≤ C(p),

with the inequality strict for strict garblings. For instance, C(q) is minimized for the
uninformative distribution δµ, and maximized for the fully informative one with support
{0, 1}.

Clearly then, the receiver faces a trade-off in her choice of garblings q1 and q2–a garbling
costs less, but also corresponds to a less informative experiment and is less valuable for her
decision problem (Blackwell 1951, 1953). Returning to our example, the more extensive or
detailed the research a doctor chooses to read, the costlier it is to draw an inference from it;
but also, the more confidence she can place in that inference.

2.1.2 Independent learning

In our model, the senders choose independent experiments and the receiver learns about their
types via a pair of independent experiments that she chooses sequentially.

However, notice that the receiver only cares about information on which sender is better,
i.e. on the difference in realized types. One can conceive of an alternative model where she is
in fact allowed to learn directly about the difference in types–i.e., to introduce correlation
between the two experiments she learns from.13 An option to do so might be valuable for the
receiver by reducing the expected cost of acquiring information of a certain gross value.

11Of course, the distribution offered by a sender indirectly matters by restricting the set of garblings
available to the receiver.

12This cost function belongs to the family of Tsallis-entropy-based-cost functions (see Tsallis (1988)). It is
also familiar from Lipnowski et al. (2020b) and Eliaz and Eilat (2021).

13This is found, for instance, in Matějka and McKay (2015), where an agent has to choose between N
alternatives that have stochastic values, and where full information is available but attention is costly.
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However, we disallow this option here to keep the model consistent with applications of
interest: in all of the examples that motivate this paper, there is no practical way for the
receiver to introduce such correlation–she must visit one sender at a time, learning about
him independently of the other available alternative, and incurring attention costs separately.

3 Equilibrium Analysis

In this section, we begin by analyzing the game described in Section 2 for arbitrary k > 0 and
µ ∈ (0, 1). As will become clear, we may have a multiplicity of equilibria that correspond to
the same distribution of payoffs. We focus our attention on equilibrium payoff distributions,
and in particular on existence (or non-existence) of equilibria that give the receiver her
first-best payoff. This is the highest payoff that she may secure across all profiles of sender
behavior (but when she is still subject to attention costs); equivalently, it is the payoff that
she would attain if the senders’ decisions in the game were delegated to her. We discuss
reasons for our focus on this class of equilibria in Section 3.2.

Since every distribution with expectation equal to the prior is a garbling of the fully
informative distribution, the receiver has greatest latitude when both senders offer the fully
informative distribution. Thus, she attains her first-best payoff when both senders offer full
information. However, the same payoff may be attained even when senders choose other,
less informative distributions: at the heart of this is the fact that due to attention costs,
the receiver might not use full information even when allowed to. As an example, suppose
that when offered full information, the following is a best response for the receiver: visit
Sender 1 first, learn according to the garbling {µ− ϵ, µ+ ϵ} for him; then visit Sender 2 and
choose the uninformative garbling for him. Then even if, e.g., Sender 1 offers the distribution
{µ− 2ϵ, µ+ 2ϵ} and Sender 2 offers no information, the receiver gets to follow the same
protocol and secure her first-best payoff. The next observation is easy to make.

Remark. Suppose there is an equilibrium in which Sender i offers pi. Then the receiver
achieves her first-best payoff in this equilibrium if and only if her best response on path is
also a best response on path to full information from both senders.

This observation is key to the only if direction of the following proposition. The if
direction is obvious.

Proposition 3.1 (First-best). For given k and µ, there is an equilibrium that gives the
receiver her first-best payoff if and only if there is an equilibrium in which both senders offer
full information.
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3.1 Equilibrium with full information provision

An implication of Proposition 3.1 is that in order to establish conditions for existence of an
equilibrium where the receiver gets her first-best payoff, we need only look for existence of an
equilibrium where full information is provided. The next proposition tackles precisely this
question.

Proposition 3.2 (Full information equilibrium). There is an equilibrium in which both
senders offer full information if and only if k > 1

2
and µ ∈

[
1
4k
, 1− 1

4k

]
.

Notice that k, the parameter in the attention cost function, is crucial. If it is above 1
2
, we

obtain an interval of priors over which full information is an equilibrium, and this interval
expands as k grows. In the limit, as k → ∞, the interval converges to (0, 1), the full range of
priors. The following corollary, which trivially follows from propositions 3.1 and 3.2, embodies
our main result.

Corollary 3.2.1. There is an equilibrium in which the receiver gets her first-best payoff if
and only if k > 1

2
and µ ∈

[
1
4k
, 1− 1

4k

]
.

A second corollary states the same result (as in Proposition 3.2) differently.

Corollary 3.2.2. For any µ ∈ (0, 1), there is an equilibrium in which both senders offer full
information if and only if k ≥ max

{
1
4µ
, 1
4(1−µ)

}
(strict inequality if µ = 1

2
).

Stated this way, one might conjecture that the result is trivially obtained because for high
enough values of k, the receiver finds it optimal to stay entirely ignorant even when offered
full information. As it turns out, this is not the case, and for any finite k she does undertake
some learning from at least one sender when offered full information.

Instead, we obtain the full information equilibrium because for high enough values of k,
the receiver finds it optimal to learn only about one sender. The proof of Proposition 3.2,
which follows next, will clarify how this fact plays a crucial role. We assume here that k = 1;
the structure of the proof is the same for a generic k > 0, and the details are relegated to the
appendix.14

Given k = 1, suppose that each sender offers full information, i.e., each sender chooses the
fully informative distribution with support {0, 1}. We first analyze the receiver’s best response
and then show that a sender can gain by unilaterally deviating to a different distribution if
and only if µ ̸∈

[
1
4
, 3
4

]
, thereby confirming Proposition 3.2 for k = 1.

14Focusing here on k = 1 eases exposition by allowing us to avoid several mechanical sub-cases that add
little insight.
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Recall that one element of the receiver’s response is a choice of whom to visit first. Here,
since both senders offer the same distribution, she is indifferent between the two orders
of visit, and we suppose that with probability q ∈ [0, 1] Sender 1 is the first to be visited.
Henceforth, whenever we refer to the first sender, we will mean the sender visited first, and
correspondingly for the second sender.

To analyze how the receiver optimally learns at each stage, we proceed in two steps–first,
we determine her stage 2 best response for each belief that could be drawn at stage 1;
second, we use that to solve for her optimal stage 1 behavior. The concavification technique,
popularized in this literature by Kamenica and Gentzkow (2011), comes in handy here.

Receiver’s optimal learning strategy at stage 2: Say the belief drawn at stage 1,
about the first sender, is x ∈ [0, 1]. Then, the receiver selects the second sender if the stage 2
draw y turns out to be higher than x (and tosses a coin when y = x).15 Her payoff from a
stage 2 belief y is then max {x, y}, minus the attention cost associated with y. Now, since
any distribution (with expectation equal to the prior) is a garbling of the fully informative
one, her stage 2 optimization problem is given by

max
q∈∆[0,1]

∫
[0,1]

max{x, y} − (y − µ)2dq(y) s.t.

∫
[0,1]

y dq(y) = µ.

Let U2(y;x) := max {x, y} − (y − µ)2 for x, y ∈ [0, 1]. This is piecewise concave in y, and
is plotted for a representative value of x in Figure 2. We know from Kamenica and Gentzkow
(2011) that for any given x, the receiver’s optimal q is determined using the concavification
of U2(y;x) over [0, 1].16 The concavification is the red curve in Figure 2. It is evident that
depending on where µ lies, the optimal distribution of beliefs is either degenerate on µ, or is
binary.

Lemma 3.3 (Stage 2 optimal garbling). Suppose that the receiver’s stage 1 draw is x ∈ [0, 1].
Then her stage 2 optimal garbling is either degenerate or binary, and its support is as follows.

1. If µ < 1
2
, 

{
x− 1

4
, x+ 1

4

}
if 1

4
≤ x < µ+ 1

4

{0,
√
x} if µ2 < x < 1

4

{µ} ifx ≤ µ2 or x ≥ µ+ 1
4

15As mentioned previously, the tie-breaking rule does not matter for our results. This is because x would
never be in the support of the receiver’s optimal stage 2 garbling.

16Given x, the concavification of U2(y;x) is the smallest concave function that lies weakly above U2(y;x)
for all y ∈ [0, 1].
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Figure 2: The receiver’s stage 2 payoff function and its concavification (red).

2. If µ = 1
2
, 

{
x− 1

4
, x+ 1

4

}
if 1

4
< x < 3

4

{µ} if x ≤ 1
4
or x ≥ 3

4

3. If µ > 1
2
, 

{
x− 1

4
, x+ 1

4

}
if µ− 1

4
< x ≤ 3

4{
1−

√
1− x, 1

}
if 3

4
< x < 1− (1− µ)2

{µ} if x ≤ µ− 1
4
or x ≥ 1− (1− µ)2

The interesting thing to note here is that regardless of the prior, if the first stage draw is
either very high or very low, then the receiver chooses not to learn anything from the second
sender. This is intuitive–for a high enough belief that the first sender’s type is good, she
deems it very unlikely that the second sender is better, and does not invest in learning about
him. Instead, she simply accepts the first sender. Conversely, if the first stage draw is very
low, she simply accepts the second sender.

Furthermore, the thresholds beyond which there is no learning at stage 2 depend on the
prior. The prior is the expected type of the second sender, so the higher it is, the larger
(smaller) the range of stage 1 beliefs over which the second sender is accepted (rejected)
without stage 2 learning.

For intermediate values of the stage 1 draw, the receiver does learn at the second stage
and chooses a binary distribution, selecting the second (first) sender at the higher (lower)
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realization. Since she has only two actions to choose from at this point, she would never
choose a distribution with support on more than 2 beliefs: if she did, then she would be
selecting the same sender at more than one belief, and could reduce her attention cost by
collapsing those two beliefs into one.

Receiver’s optimal learning strategy at stage 1: Using the above result, it is
straightforward to obtain the receiver’s first stage continuation payoffs for an arbitrary x,
and determine her first stage optimal garbling from its concavification over [0, 1]. This leads
to the following.

Lemma 3.4 (Stage 1 optimal garbling). Any distribution with expectation µ and support
drawn from the following sets is optimal for the receiver at stage 1:

1.
{
µ− 1

4

}
∪
[
1
4
, µ+ 1

4

]
if µ ∈

[
1
4
, 1
2

]
.

2.
[
µ− 1

4
, 3
4

]
∪
{
µ+ 1

4

}
if µ ∈

[
1
2
, 3
4

]
.

3. {0, y1(µ)} if µ < 1
4
, where y1(µ) ∈

(
µ, 1

4

)
.

4. {y2(µ), 1} if µ > 3
4
, where y2(µ) ∈

(
3
4
, µ

)
.

The exact expressions for y1(µ) and y2(µ) are not important. The main thing to note
here is that the stage 1 solution always involves some learning, and is unique if and only if
µ ̸∈

[
1
4
, 3
4

]
. Notably, in spite of the fact that there are only two senders and binary types in

this model, the receiver may choose a distribution with support on more than two beliefs at
stage 1. The reason is that each stage 1 belief is optimally followed by a different degree of
learning at stage 2.17

The multiplicity of best responses for µ ∈
[
1
4
, 3
4

]
captures the key notion of substitutability

between information sources: some of these responses involve learning more about the second
sender, while others involve learning more about the first one, and the receiver is indifferent
across these alternatives.

No profitable deviation for a sender when µ ∈
[
1
4
, 3
4

]
: When µ ∈

[
1
4
, 3
4

]
, we need

to make a selection among the receiver’s stage 1 optimal responses for the purpose of proving
the existence of our equilibrium. Notice that the most informative (in the Blackwell sense) of
the optimal distributions has support

{
µ− 1

4
, µ+ 1

4

}
, and by Lemma 3.3, this is the only

one among them that is necessarily followed by no learning at stage 2. We assume (in the
construction of our equilibrium) that the receiver breaks her indifference in favor of this
distribution. That is, when indifferent, she would rather not put off learning until the next
stage.

17Such an observation is familiar from models of dynamic rational inattention (e.g. Hébert and Woodford
(2019), Zhong (2019)) where continuation payoffs depend on posterior beliefs.
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To summarize: if µ ∈
[
1
4
, 3
4

]
, the receiver’s on-path best response to full information is

the following. Visit Sender 1 with probability q ∈ [0, 1], and Sender 2 with probability 1− q.
Choose the garbling with support

{
µ− 1

4
, µ+ 1

4

}
for the first sender. If the belief drawn is

µ− 1
4
, select the second sender without learning anything about him. If the belief drawn is

µ+ 1
4
, select the first sender without learning anything about the second one.

Having specified on-path behavior, we examine what happens in the event of a unilat-
eral deviation by a sender to a less-than-fully informative distribution. First note that if{
µ− 1

4
, µ+ 1

4

}
is a garbling of the distribution that the sender deviates to, then the receiver

need not change her behavior, and payoffs are unaffected. If instead
{
µ− 1

4
, µ+ 1

4

}
is not a

garbling of the new distribution, then we can specify the following protocol for the receiver.
She continues with the same order of visits as on path (i.e., with probability q she visits Sender
1 first). If the deviating sender is visited second, then she adopts the same learning behavior
as on path (this is clearly feasible regardless of what the deviation is). If the deviating sender
is visited first, then she learns nothing from him; instead, she moves on and learns according
to the garbling

{
µ− 1

4
, µ+ 1

4

}
about the second (non-deviating) sender (following which, she

selects the deviating sender if and only if the lower belief is realized).
Such a response to the deviation is sequentially rational for the receiver: our preceding

analysis tells us that this protocol is among the receiver’s best responses to full information,
and so it preserves her on-path payoff (which in turn is her highest attainable payoff in this
game).

Now it remains to be shown that this off-path response renders the sender’s deviation
unprofitable. The next lemma leads us in that direction.

Lemma 3.5. For all µ ∈
[
1
4
, 3
4

]
, conditional on being visited first, a sender’s expected payoff

is equal to 1/2 for any of the receiver responses specified in Lemma 3.4, provided that her
subsequent behavior is dictated by Lemma 3.3.

Combined with the fact that a deviation affects neither the probability of being visited
first, nor the expected payoff conditional on being visited second; this implies that in fact it
is not only the receiver, but also the deviating sender himself, whose payoff is unaffected by
the deviation. Thus, providing full information is indeed an equilibrium.

Profitable deviation for a sender when µ ̸∈
[
1
4
, 3
4

]
: When µ ̸∈

[
1
4
, 3
4

]
, the analogous

reasoning does not apply because the receiver’s best response is unique and involves learning
from both senders on path. In this case, as illustrated below, we can construct a profitable
deviation for a sender. For low priors a sender gains by deviating to provide no information;
for high priors a sender gains by inducing the receiver to visit him first.

If µ < 1
4
, then on path at least one sender must get a payoff weakly lower than 1

2
. It is

easy to see that by unilaterally deviating to the uninformative distribution, this sender can
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attain a payoff strictly above 1
2

(Lemma 3.3 tells us that the receiver would learn according
to {0,

√
u} from the non-deviating sender).

If µ > 3
4
, then we have seen that on path the receiver chooses support {y2(µ), 1} at stage

1. Following belief 1 she immediately selects the first sender, and following belief y2(µ), she
learns according to

{
1−

√
1− y2(µ), 1

}
at stage 2. Now, there must be at least one sender

who is visited first with probability less than 1. This sender can profitably deviate to a
distribution {l, 1} with 1−

√
1− y2(µ) < l < y2(µ), which poses a binding constraint for the

receiver only at stage 2. Upon observing this deviation, it is optimal for the receiver to visit
the deviating sender first with probability 1 and simply adopt the same learning protocol
as on path. That this helps the deviating sender follows from the observation that under
the receiver’s on-path learning protocol, the first sender’s payoff is higher than the second
sender’s.

3.1.1 Other equilibria

We began this section by asserting that we are interested in equilibria that give the receiver
her first-best payoff, and in our search for conditions under which any such equilibrium exists,
Proposition 3.1 afforded us the convenience of restricting focus to full information provision.
Now, when an equilibrium with full information provision exists, what can we say about
other first-best equilibria for the receiver? In particular, how might they differ in terms of
sender payoffs, or in terms of how much information the receiver processes?

In fact, on both these counts, any first-best equilibrium for the receiver is equivalent to
the equilibrium with full information provision. Indeed, if the receiver achieves her first-best
payoff, her on-path learning protocol must be optimal under full information provision too.
It is easy to see that this in turn implies that expected payoffs for senders are also the same
in any such equilibrium: for k = 1, Lemma 3.5 implies that each sender’s expected payoff is
1/2 when the receiver follows any of her first-best protocols (and the appendix generalizes
this for other values of k).

First-best equilibria for the receiver do differ in terms of the information initially provided
by senders, but as we have argued, that does not translate to any difference in outcomes. In
fact, there is a continuum of such equilibria: essentially, since the receiver never chooses to
process full information even when it is available,18 we obtain an equilibrium whenever senders
withhold information that the receiver would discard under availability of full information.
The next proposition formalizes this claim.

18We showed this for k = 1, but the appendix shows that it is true in general: in response to full information,
the receiver only learns from one sender according to support

{
µ− 1

4k , µ+ 1
4k

}
.
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Proposition 3.6 (Equilibria outcome equivalent to full information provision). Suppose
that k > 1

2
and µ ∈

[
1
4k
, 1− 1

4k

]
. For i ∈ {1, 2}, let pi ∈ ∆[0, 1] be any distribution with

expectation µ, and of which the distribution with support
{
µ− 1

4k
, µ+ 1

4k

}
is a garbling. Then,

there is an equilibrium in which Sender i offers the distribution pi. Such an equilibrium is
outcome equivalent to full information provision.

Turning next to the question on equilibria that do not give the receiver her first-best payoff,
we have the following result that rules out their existence in the class of symmetric, binary
equilibria (that is, equilibria where both senders offer the same binary support distribution).
For any parameters, if there is a symmetric binary equilibrium, then it must fall within the
continuum of first-best equilibria for the receiver that was identified in Proposition 3.6.

Proposition 3.7 (Symmetric binary equilibria). Let the distribution p have support {l, h}
with l ∈ [0, µ) and h ∈ (µ, 1]. There is an equilibrium where both senders offer p if and only
if k > 1

2(h−l)
and µ ∈

[
l + 1

4k
, h− 1

4k

]
.

The proof uses arguments similar to those for the full information equilibrium, and for
h = 1, l = 0 this proposition is identical to Proposition 3.2.

Recalling from Section 2 the characterization of the set of garblings of a binary support
distribution, we observe that by offering a binary distribution, a sender essentially places
bounds on the receiver’s posterior belief about his type, and within those bounds the receiver is
free to acquire information flexibly. For example, if a sender offers the distribution {1/5, 4/5},
then the only restriction on the receiver’s learning is that she cannot become more than 80%

sure of that sender’s type. Given this intuitive interpretation of binary distributions, it is
natural to focus on them. Beyond this, characterizing all equilibria of the game is beyond
the scope of this paper, due largely to the challenge of characterizing the set of garblings of a
non-binary distribution.

3.2 Discussion

We have established that given k, as long as the prior is not extreme, there is a continuum
of equilibria where the receiver gets her first-best payoff. In all such equilibria, the receiver
processes the same amount of information, and expected sender payoffs are the same. In one
such equilibrium–the one we focus on for convenience–each sender provides full information.

Importantly, as k grows, the range of “extreme” priors diminishes (and vanishes in the
limit). Moreover, there is no symmetric equilbrium where senders follow “simple” strategies
of placing bounds on the receiver’s belief, and which does not fall within the aforementioned
continuum of equilibria.
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The primary reason for our focus on first-best equilibria for the receiver is that our analysis
of these equilibria highlights the novel economic force that operates in this environment.

Indeed, let us take a closer look at the intuition behind our proof of the existence of an
equilibrium with full information provision. Even when full information is provided by both
senders, attention costs make it optimal for the receiver to learn only about one sender. A
unilateral deviation by the sender about whom the receiver plans to learn can indeed become
a binding constraint for the receiver and force a change of behavior, but it cannot prevent
the receiver from switching the identity of the sender she learns about: she may always walk
away from the deviating sender and learn about the other one instead. This off-path behavior,
though, allows the receiver to maintain her first-best payoff: the senders are ex ante identical,
which means that if it is optimal to learn only about one sender, then it does not matter
which sender that is. Thus, the receiver is able to fully compensate for under-provision of
information by one sender, so that her probability of eventually selecting the better sender
remains unaffected. Intuitively, it is only this probability that matters for a sender’s expected
payoff, and so a sender does not stand to gain (or lose) by deviating.

Our results stand in sharp contrast to two benchmark scenarios: first, where only one
sender may provide information; second, where both senders may provide information but the
receiver is not subject to attention costs. We turn to a discussion of these benchmarks next.

4 Benchmarks

4.1 Single sender

To highlight the role played by competing senders, suppose that only one sender (say Sender
1) may provide information about his type. In other words, there is a single strategic sender
who faces a receiver with outside option µ. Further suppose that k > 1

2
and µ ∈

[
1
4k
, 1− 1

4k

]
,

so that in our main model with two senders there is a first-best equilibrium for the receiver.
In this setup, if Sender 1 were to offer full information, then the receiver would choose

the garbling with support
{
µ− 1

4k
, µ+ 1

4k

}
,19 yielding an expected payoff of 1/2 to Sender 1.

The first-best scenario for the receiver is one where Sender 1 offers a distribution that can be
garbled down to this binary distribution.

In equilibrium, does Sender 1 provide the receiver with her first-best level of information?
The answer is no: a deviation to a distribution with support {0, h} is profitable if h ∈ (µ, µ+ 1

4k
).

Lemma A.1 tells us that the garbling chosen by the receiver in response to this deviation has
19This is the receiver’s optimal garbling at stage 2 in the main game when the stage 1 draw is µ. We have

already computed this for k = 1, and Lemma A.1 in the appendix generalizes it.
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support
{
h−

√
h−µ
k
, h

}
. The resulting probability that Sender 1 is selected is the probability

that the receiver’s realized belief is h, which is greater than 1/2. Thus, a single sender does
not permit the receiver her first-best payoff.

It turns out that as a consequence of the receiver’s outside option being exactly equal to
the prior, an optimal distribution for Sender 1 does not exist, and the probability of Sender 1
being selected gets arbitrarily close to 1 as h approaches µ.

Wei (2020) studies a more interesting scenario where the receiver’s outside option is
above the prior belief about a single sender: λ ∈ (µ, 1). Allowing for any posterior-separable
attention cost function, he shows that a sender-preferred equilibrium exists, and in such an
equilibrium the receiver processes less information (in the Blackwell sense) than she would in
her first-best. In fact, it can easily be shown that the “sender-preferred” qualifier may be
omitted.20 That is, a sender who does not face competition in information provision restricts
(in any equilibrium) the receiver’s learning, keeping her payoff strictly below the first-best
level.

This result may be explained as follows. If the receiver never garbles the sender’s
distribution, then this is a canonical Bayesian persuasion problem and we know that the
sender-optimal distribution has support {0, λ}. When the receiver garbles due to attention
costs, this distribution is no longer sender-optimal since the receiver would garble it to the
uninformative distribution.21 Consequently, the sender must provide the receiver with more
information–in particular, he must allow her to generate beliefs strictly above λ. Despite
this, Wei (2020)’s results tell us that the sender need not go to the extent of providing as
much information as the receiver would choose in her first-best. It is optimal for the sender
to place an upper bound on the receiver’s posterior belief, which is above λ but is a binding
constraint for her.

4.2 No attention costs (k = 0)

We now return to our model with competitive information provision but suppose that k = 0,
so that attention is costless for the receiver. Here, the receiver does not garble the senders’
experiments; rather, she processes all information made available by the senders. Our
discussion below draws upon earlier literature that has analyzed this model, and that we
have discussed in our literature review.

Clearly, here the receiver attains her first-best payoff if and only if she learns at least one
20This is a consequence of the fact that the receiver has a unique optimal garbling in response to any binary

distribution, as we show.
21The support of any feasible garbling lies on [0, λ], but the outside option is weakly preferred at all of

these beliefs. Thus, there is no benefit of learning, while there is a cost.
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sender’s type with certainty. We argue that there cannot be an equilibrium where either
sender offers full information. For the sake of contradiction, suppose that Sender 1 offers full
information, and recall our assumption that in case of ties the receiver selects each sender
with equal probability. A bit of reflection reveals that in fact a best response for Sender 2
does not exist: he would like to choose the distribution {ϵ, 1} with ϵ > 0 arbitrarily close to 0.
At a realization of ϵ, Sender 2’s probability of being selected is 1− µ. On the other hand, if ϵ
were chosen to be equal to 0 then this probability would be 1−µ

2
. Evidently, the distribution

{ϵ, 1} with a small, positive ϵ yields a higher expected probability of being selected than
{0, 1}.

The qualitative differences that arise in the presence of attention costs may be appreciated
by observing that given k > 0, the receiver’s behavior following a posterior of 0 is not different
from her behavior following a small, positive posterior ϵ: in either case she is sure enough
about the type of that sender that she does not wish to learn anything about the other
sender.

The game with k = 0 has a unique equilibrium as described in the claim below. The proof
can be found in Boleslavsky and Cotton (2015) and is omitted here.

Claim 4.1 (Unique equilibrium without attention costs). Let k = 0. Then there is a unique
equilibrium in which:

1. Each sender chooses the uniform distribution on [0, 2µ] if µ ≤ 1
2
.

2. Each sender chooses a CDF with a continuous portion F (x) = x
2µ

on [0, 2(1− µ)] and a
point mass of size 2− 1

µ
on 1 if µ > 1

2
.

5 Welfare Effects of Costly Attention

We now explore an intriguing possibility that emerges from our analysis. We have seen that
with positive attention costs the receiver might be able to elicit full information from both
senders in equilibrium, although she does not process all of it. On the other hand, without
attention costs, there is a unique equilibrium where senders do not provide full information,
but where all available information is processed. One might wonder, then, if it is possible that
the receiver ends up basing her decision on better quality information when she is subject to
attention costs than when she is not. Our next result indeed answers this in the affirmative.

Proposition 5.1 (Welfare effects of attention costs). Suppose that k > 0 and parameters
are such that a full information equilibrium exists. Then, the ex ante probability that the
better sender is eventually selected by the receiver in this equilibrium is strictly higher than
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the corresponding probability in the unique equilibrium under k = 0 if and only if k is below a
threshold k (µ).

To understand why the inequality reverses when k > k(µ), note that even as we hold
the full information equilibrium constant, the amount of information the receiver chooses to
process in this equilibrium diminishes as k grows, so that beyond a certain point the receiver
does better with the limited amount of information provided under k = 0.

6 Extensions

Here, we illustrate that our main result on existence of a full information equilibrium is
robust to different modeling choices. In each case, familiar lines of reasoning can be invoked
to see that there is nothing sacrosanct about full information per se: there is a continuum of
equilibria that are outcome equivalent.

6.1 Ex ante heterogeneity

Our baseline model assumes that the distributions of the senders’ types have identical
means. There, the receiver’s problem is the most interesting, since ex ante she has very little
information to base her choice on.

In this section, we show that our main result extends to settings where the prior beliefs
on the two senders are different but sufficiently close. Setting k = 1 for expositional
convenience, we have the following result, whose proof follows steps analogous to the one for
the homogeneous means case.

Proposition 6.1. There is an equilibrium in which each sender offers full information if
|µ2 − µ1| ≤ 1

4
and

1. µ1, µ2 ∈
[
1
4
, 3
4

]
; or

2. µi ≤ 3
4
≤ µj for i, j ∈ {1, 2} and i ̸= j; or

3. µi ≤ 1
4
≤ µj for i, j ∈ {1, 2} and i ̸= j.

6.2 Sender experiment-dependent cost function

In our baseline model, attention costs depend only on the information structure the receiver
takes a draw from, and not directly on a sender’s experiment.
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Here, we incorporate the possibility that the more informative the sender’s experiment,
the less costly a given information structure is for the receiver. This corresponds to the
following intuition: the less informative the sender is, the costlier it is for the receiver to
maintain a particular information structure, since she is forced to pay closer attention.

We do so by allowing the receiver’s information processing cost at a sender to itself depend
on the distribution chosen by the sender. That is, we amend the attention cost so that it is
now given (at Sender 1) by

C(q1, p1) = k(p1)

∫
[0,1]

(x− µ)2dq1(x), (2)

where p1 is Sender 1’s chosen distribution and q1 is the receiver’s chosen garbling. To capture
the intended intuition, we assume that k is weakly decreasing in the Blackwell order.

We define kF := k(pB1 ) to be the minimum cost parameter, where pB1 is the Bernoulli
distribution begotten by full information provision by the sender. Naturally, we stipulate
that kF is positive.

With this modified cost function, our main result continues to hold. Namely, provided
the attention cost is sufficiently high, there is an equilibrium in which both senders offer full
information:

Proposition 6.2. For all kF > 1
2
, if µ ∈

[
1

4kF
, 1− 1

4kF

]
then there is an equilibrium in which

both senders offer full information.

Proof. On path, where each sender provides full information, the analysis is unchanged
from earlier sections (with kF in lieu of k), and the receiver’s optimal protocol is unaltered.
Moreover, should a sender deviate, then again the receiver can behave optimally by learning
nothing at the deviating sender, eliminating the possibility for a sender to deviate profitably.

■

6.3 Non-binary types

The spirit of our main result also extends to a scenario in which each sender’s type is an i.i.d.
real-valued random variable ωi that is distributed on some subset of the real line according
to cdf F . We assume that ωi has a finite mean, µ, and that F is not the degenerate mass
point on µ (or else all results would be trivial). Furthermore, we specify that the receiver is
risk-neutral, so that she only cares about the distribution of posterior means. If each sender
offers full information, the receiver’s choice of distribution of posterior means is equivalent
(see e.g. Kolotilin (2018)) to a choice of mean-preserving contraction (MPC) G ∈ M (F )

of the prior F . Information remains costly, and the receiver incurs a cost according to the
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cost functional C : M (F ) → R+. Mirroring our main specification, we assume a specific
quadratic functional form:

C (G) = k

∫
(x− µ)2 dG.

Now let us think back to the main specification, and recall that the receiver’s first-best
information acquisition where she acquires the distribution with support

{
µ− 1

4k
, µ+ 1

4k

}
at the first sender and the degenerate distribution at the second is such that she acquires
strictly less information at the first sender as k increases. Moreover, it is easy to see that for
all k sufficiently high, this distribution is an MPC of F and must be optimal, since it solves
a problem with fewer constraints.22 Consequently, an analog of Proposition 3.2 holds

Proposition 6.3. If k is sufficiently high, there is an equilibrium in which both senders offer
full information.

7 Conclusion

We study a model of information disclosure by two senders who compete to be selected by a
receiver. The receiver, instead of passively accepting the disclosure rule adopted by a sender,
may choose to garble it before drawing a belief. The lower the informativeness of the chosen
garbling, the lower her attention costs.

We show how for a large class of parameters, there are equilibria where the senders offer
at least as much information to the receiver as she would choose if she herself could control
information provision. All such equilibria are outcome equivalent, and there is no symmetric
binary equilibrium that leads to a different distribution of outcomes. Moreover, we find that
the receiver may base her final decision on better quality information when she is subject to
attention costs than when she is not.

Our results stem from an interesting trade-off that generalizes beyond the specifics of
our model. Due to attention costs, the receiver never finds it worthwhile to learn either
sender’s type perfectly. That is, even with access to full information, she leaves some scope
for further learning about each. Moreover, since her task is to choose between the senders,
information on the type of one sender partially substitutes for information on the type of the
other. Consequently, starting from a situation of full disclosure by both senders, if either
sender deviates and restricts the receiver’s learning, she has an opportunity to make up for it
by using some of the “surplus” information about the other sender. The deviating sender

22As k goes to infinity, the distribution over posteriors at the first sender converges to the degenerate mass
at µ, which is by assumption a strict MPC of F .

23



thus has limited ability–if any–to affect the overall quality of the receiver’s information across
the two alternatives.

Our model can be applied to several other settings beyond our leading example in which
pharmaceutical companies strategically disclose information to prescribing physicians. For
instance, the receiver could be a buyer sequentially visiting two used car dealerships, taking
test drives and gathering information on the features of each alternative. Other settings
include provision of information about insurance or pensions plans, and the design of political
campaigns.
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A Appendix: Proofs

In our proofs, we frequently invoke the receiver’s optimal protocol (and senders’ payoffs) when
both senders offer the same binary distribution (which may be fully informative). Therefore,
we begin by studying this.

A.1 The receiver’s optimal protocol (and sender payoffs) when both

senders offer the same binary distribution

Consider any k > 0 and µ ∈ (0, 1). Let each sender offer support {l, h}, with l ∈ [0, µ) and
h ∈ (µ, 1].

Lemma A.1 (Optimal stage 2 garbling). Suppose that the receiver’s stage 1 draw is x ∈ [l, h].
Her stage 2 optimal garbling is either degenerate or binary, and its support is as follows.

1. If k > 1
2(h−l)

and µ ≤ min
{
h− 1

2k
, l + 1

2k

}
:



{µ} if x ∈ [l, l + k(µ− l)2]{
l, l +

√
x−l
k

}
if x ∈ (l + k(µ− l)2, l + 1

4k
){

x− 1
4k
, x+ 1

4k

}
if x ∈

[
l + 1

4k
, µ+ 1

4k

)
{µ} if x ∈

[
µ+ 1

4k
, h

]
2. If k > 1

2(h−l)
and µ ≥ max

{
h− 1

2k
, l + 1

2k

}
:
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

{µ} if x ∈
[
l, µ− 1

4k

]{
x− 1

4k
, x+ 1

4k

}
if x ∈

(
µ− 1

4k
, h− 1

4k

]{
h−

√
h−x
k
, h

}
if x ∈

(
h− 1

4k
, h− k(h− µ)2

)
{µ} ifx ∈ [h− k(h− µ)2, h]

3. If l + 1
2k

≤ µ ≤ h− 1
2k

:


{
x− 1

4k
, x+ 1

4k

}
if x ∈

(
µ− 1

4k
, µ+ 1

4k

)
{µ} if x ∈

[
l, µ− 1

4k

]
∪
[
µ+ 1

4k
, h

]
4. If k > 1

2(h−l)
and h− 1

2k
< µ < l + 1

2k
:



{µ} if x ∈ [l, l + k(µ− l)2]{
l, l +

√
x−l
k

}
if x ∈ (l + k(µ− l)2, l + 1

4k
){

x− 1
4k
, x+ 1

4k

}
if x ∈

[
l + 1

4k
, h− 1

4k

]{
h−

√
h−x
k
, h

}
if x ∈ (h− 1

4k
, h− k(µ− h)2)

{µ} if x ∈ [h− k(µ− h)2, h]

5. If k ≤ 1
2(h−l)

:



{µ} if x ∈ [l, l + k(µ− l)2]{
l, l +

√
x−l
k

}
if x ∈ (l + k(µ− l)2, l + k(h− l)2)

{l, h} if x ∈ [l + k(h− l)2, h− k(h− l)2]{
h−

√
h−x
k
, h

}
if x ∈ (h− k(h− l)2, h− k(µ− h)2)

{µ} if x ∈ [h− k(µ− h)2, h]

Proof. The receiver’s stage 2 payoffs for a stage 2 belief y are given by

U2(y;x) = max {x, y} − k(y − µ)2.

This is piecewise concave. We first obtain the concavification of U2(y;x) over [l, h] and then
use it to find the optimal garbling.

The concavification of U2(y;x) is obtained by joining two points y1, y2 (in a straight line)

27



with l ≤ y1 < x < y2 ≤ h. By the definition of concavification of a function, we must have23

U ′
2(y1;x) ≤

U2(y2;x)− U2(y1;x)

y2 − y1
≤ U ′

2(y2;x), (3)

with the first inequality holding with equality if y1 > l and the second one holding with
equality if y2 < h.

The solution to Inequation 3 with both equalities is

y1 = x− 1

4k
, y2 = x+

1

4k
.

If l + 1
4k

< x < h− 1
4k

, the concavification is given by y1 = x− 1
4k
, y2 = x+ 1

4k
.

If x ≤ min
{
l + 1

4k
, h− 1

4k

}
, the lower bound l binds and the concavification has y1 = l.

y2 = l +
√

x−l
k

is obtained from the second equality in Inequation 3.

If x ≥ max
{
h− 1

4k
, l + 1

4k

}
, the upper bound h binds and the concavification has y2 = h.

y1 = h−
√

h−x
k

is obtained from the first equality in Inequation 3.

If h− 1
4k

< x < l + 1
4k

, the concavification is:

1. y1 = l, y2 = l +
√

x−l
k

if l +
√

x−l
k

≤ h.

2. y2 = h, y1 = h−
√

h−x
k

if h−
√

h−x
k

≥ l.

3. y1 = l, y2 = h otherwise.

Having obtained the concavification for any x, the optimal stage 2 garbling has support
{y1, y2} if µ ∈ (y1, y2), and support {µ} otherwise. Straightforward algebra then gives us the
stated result. ■

Lemma A.2 (Optimal stage 1 garbling).

1. If k > 1
2(h−l)

and µ ≤ min
{
h− 1

2k
, l + 1

2k

}
, the receiver’s optimal stage 1 garbling is

(a) Any distribution with expectation µ and support drawn from the set
{
µ− 1

4k

}
∪[

l + 1
4k
, µ+ 1

4k

]
if µ ≥ l + 1

4k
.

(b) The distribution with support {l, y1(µ)} with y1(µ) ∈
(
µ, l + 1

4k

)
if µ < l + 1

4k
.

23The best way to see this is to assume it is does not hold and see that the definition of concavification is
violated.
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2. If k > 1
2(h−l)

and µ ≥ max
{
h− 1

2k
, l + 1

2k

}
, the receiver’s optimal stage 1 garbling is:

(a) Any distribution with expectation µ and support drawn from the set
[
µ− 1

4k
, h− 1

4k

]
∪{

µ+ 1
4k

}
if µ ≤ h− 1

4k
.

(b) The distribution with support {y2(µ), h} with y2(µ) ∈
(
h− 1

4k
, µ

)
if h− 1

4k
< µ.

3. If l + 1
2k

≤ µ ≤ h− 1
2k

, the receiver’s optimal stage 1 garbling is any distribution with
expectation µ and support on

[
µ− 1

4k
, µ+ 1

4k

]
.

4. If k > 1
2(h−l)

and h− 1
2k

< µ < l + 1
2k

, the receiver’s stage 1 optimal garbling is:

(a) Any distribution with expectation µ and support drawn from
{
µ− 1

4k

}
∪
[
l + 1

4k
, h− 1

4k

]
∪{

µ+ 1
4k

}
if l + 1

4k
≤ µ ≤ h− 1

4k
.

(b) The distribution with support {l, y1(µ)} with y1(µ) ∈
(
µ, l + 1

4k

)
if µ < l + 1

4k
.

(c) The distribution with support {y2(µ), h} with y2(µ) ∈
(
h− 1

4k
, µ

)
if h− 1

4k
< µ.

5. If k ≤ 1
2(h−l)

, then

(a) If µ ≤ l+h
2

, the receiver’s optimal stage 1 garbling is {l, y1(µ)}, where y1(µ) > µ is
either on (l + k(µ− l)2, l + k(h− l)2) or on [l + k(h− l)2, h− k(h− l)2].

(b) If µ > l+h
2

, the receiver’s optimal stage 1 garbling is {y2(µ), h}, where y2(µ) < µ

is either on [l + k(h− l)2, h− k(h− l)2] or on (h− k(h− l)2, h− k(µ− h)2).

Proof. Let U1(x) be the receiver’s first stage continuation payoffs for a first stage belief x. Say
the stage 2 distribution following x has support {y1, y2}, with y1 ≤ y2 and νy1+(1−ν)y2 = µ.
Then U1(x) = νU2(y1;x) + (1− ν)U2(y2;x)− k(x− µ)2. The concavification of U1 over [l, h]

is used to obtain the stage 1 optimal distribution.
For any µ, U1 is continuous. Note that U1 is affine over any interval of x for which the

stage 2 optimal garbling is
{
x− 1

4k
, x+ 1

4k

}
.

Remark. If the stage 1 optimal garbling is unique, then it cannot have support {µ}.

The reason for this is the following. If the stage 1 unique optimal garbling is degenerate,
then it is verified from Lemma A.1 that the stage 2 optimal garbling has binary support, say
{y1, y2}. But then, choosing the garbling {y1, y2} at stage 1 and {µ} at stage 2 must give the
same expected payoff, and hence must be optimal. This is a contradiction.

Now, first let k > 1
2(h−l)

and µ ≤ min
{
h− 1

2k
, l + 1

2k

}
.
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Then U1 is strictly convex in a right neighborhood of l+k(µ− l)2 and concave everywhere
else (weakly on

(
l + 1

4k
, µ+ 1

4k

)
). Then, the concavification must join points z1 ≤ l+k(µ− l)2

and z2 > l + k(µ− l)2 (in a straight line), with z1, z2 determined by a condition analogous to
Inequation 3.

Say µ ≥ l+ 1
4k

. Then it is verified that z1 = µ− 1
4k

and z2 = l+ 1
4k

. Since µ ∈
[
l + 1

4k
, µ+ 1

4k

]
and U1 is affine over this interval, a distribution with support on

{
µ− 1

4k

}
∪
[
l + 1

4k
, µ+ 1

4k

]
would be optimal.

Now say µ < l + 1
4k

. Clearly the lower bound l would bind and z1 = l must hold. z2

is obtained from the second equality in Inequation 3, and it must be higher than µ, since
otherwise the optimal garbling would uniquely be degenerate, and we ruled that out above.
z2 is denoted by y1(µ) in the statement of the Lemma.

Now let k > 1
2(h−l)

and µ ≥ max
{
h− 1

2k
, l + 1

2k

}
. The argument is symmetric to the

preceding one.
In this case U1 is strictly convex in a left neighborhood of h − k(h − µ)2 and concave

everywhere else (weakly on (µ− 1
4k
, h− 3

4k
)). The concavification is obtained by joining points

z1 and z2 as before.
It is verified that for µ ≤ h − 1

4k
, z1 = h − 1

4k
and z2 = µ + 1

4k
. This tells us that a

distribution with support on
[
µ− 1

4k
, h− 1

4k

]
∪
{
µ+ 1

4k

}
would be optimal.

For µ > h− 1
4k

, z2 = h must hold. Now z1 is found from the first equality in Inequation
3, and it must be lower than µ, since otherwise the stage 1 optimal garbling would uniquely
be degenerate. z1 is denoted by y2(µ) in the statement of the Lemma.

Cases 3 and 4 are dealt with completely analogously.

Finally, let k ≤ 1
2(h−l)

.
Then U1 is strictly convex in a right neighborhood of l+k(µ−l)2, and in a left neighborhood

of h− k(h− µ)2, and strictly concave everywhere else.
Clearly, the concavification must:

1. join points z1 ∈ [l, l + k(µ− l)2) and z2 > l + k(µ− l)2 in a straight line, and

2. join points z3 < h− k(h− µ)2 and z4 ∈ (h− k(h− µ)2, h] in a straight line.

As usual, these points are determined by a condition analogous to Inequation 3. It turns
out that z1 = l and z4 = h, while the positions of z2 and z3 depend on parameters. The
optimal garbling is either {l, z2} or {z3, h}, depending on where µ lies.

■
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The previous result immediately gives us the following useful corollary.

Corollary A.2.1. The following two statements are equivalent:

1. µ ∈ [l + 1
4k
, h− 1

4k
] and k > 1

2(h−l)
.

2. There are multiple stage 1 optimal garblings for the receiver, including support {µ} and
support

{
µ− 1

4k
, µ+ 1

4k

}
.

Lemma A.3 (Sender payoffs). Suppose k > 1
2(h−l)

and µ ∈ [l + 1
4k
, h− 1

4k
]. If the receiver’s

behavior is as specified in Lemmata A.1 and A.2, then conditional on being the first sender to
be visited, the probability of being selected is 1/2 regardless of which stage 1 optimal garbling
is chosen by the receiver.

Proof. We show the proof for µ ≤ min
{
h− 1

2k
, l + 1

2k

}
. It is entirely analogous for the other

cases from Lemma A.1.
Suppose l + 1

4k
≤ µ ≤ min

{
h− 1

2k
, l + 1

2k

}
and the receiver’s first stage response is a

distribution F on
{
µ− 1

4k

}
∪ [l + 1

4k
, µ+ 1

4k
].

Using Lemma A.1 it is easy to see that the probability of the first sender being selected
conditional on a first stage belief x is given by

P (x) =

0 if x = µ− 1
4k

2kx− 2kµ+ 1
2

if x ∈ [l + 1
4k
, µ+ 1

4k
]

Suppose that F places a mass p ≥ 0 on µ− 1
4k

. Then conditional on being visited first, a
sender’s expected probability of being selected is given by

V1 = p∗0 +

∫ µ+ 1
4k

l+ 1
4k

P (x) dF (x) (4)

Next note that

p(µ− 1

4k
) +

∫ µ+ 1
4k

l+ 1
4k

xdF (x) = µ (5)

and

∫ µ+ 1
4k

l+ 1
4k

dF (x) = 1− p (6)

Inserting Equations 3 and 4 into Equation 2, we get that V1 =
1
2
, which is independent of

F . ■
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A.2 Proof of Proposition 3.7

Suppose each sender offers support {l, h}, with l ∈ [0, µ) and h ∈ (µ, 1]. Let q ∈ [0, 1] be the
probability that on path the receiver visits Sender 1 first.

First let k > 1
2(h−l)

and µ ∈ [l + 1
4k
, h− 1

4k
].

Given a stage 1 draw x, the receiver’s optimal stage 2 garbling is specified in Lemma
A.1. At stage 1, she has multiple best responses. The most informative one among them has
support

{
µ− 1

4k
, µ+ 1

4k

}
, and from Lemma A.2 it is the only one that is necessarily followed

by no learning at stage 2. Say she breaks her indifference in favor of this distribution. At
belief µ− 1

4k
she accepts the first sender with certainty, and at belief µ+ 1

4k
accepts the other

one with certainty.
Suppose that a a sender deviates to a different distribution, and that the receiver does not

change her order of visits in response. Then the deviating sender’s payoffs may be affected
only if he is visited first and the distribution he deviates to is such that

{
µ− 1

4k
, µ+ 1

4k

}
is

not a garbling of it.
In this case, regardless of the deviation, the receiver can secure a payoff equal to what

she gets in the absence of the deviation, by picking {µ} at stage 1, followed by visiting the
other sender and choosing

{
µ− 1

4k
, µ+ 1

4k

}
. Thus the deviation cannot force the receiver to

choose from outside the set of optimal garblings from Lemma A.2.
But then due to Lemma A.3, the deviating sender’s payoffs are unaffected. Thus, there

does not exist a profitable deviation and we have an equilibrium.

Next say that either k > 1
2(h−l)

and µ ̸∈ [l + 1
4k
, h− 1

4k
], or k ≤ 1

2(h−l)
.

Then from lemmata A.2 and A.1, on path the receiver chooses a unique binary garbling
at stage 1, and exactly one belief in the support is followed by learning at the second sender.

Denote the stage 1 belief following which the receiver learns at stage 2 by w. Under each
possibility we show that there is a profitable deviation for a sender.

Possibility 1 : Say w < µ and the stage 2 garbling is {l, h}. There must be a sender,
say sender i, who is visited first with probability < 1 on path. Suppose sender i deviates
to {l′, h}, where l < l′ < w. But on observing this deviation, the receiver would choose to
visit sender i first. By doing this she could get her first-best. Thus, behavior is as on path,
except that the order of visits is changed: sender i is visited first with probability 1. It is
easy to verify that the payoff from being visited first is > 1

2
(i.e. higher than the payoff from

being visited second), which means that this increase in probability of being visited first is
profitable.
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Possibility 2 : Say w < µ and the stage 2 garbling is
{
h−

√
h−w
k

, h
}

. Everything is as in

possibility 1, except that l′ is chosen such that h−
√

h−w
k

< l′ < w.

Possibility 3: If w > µ and is followed by a stage 2 best response
{
l, l +

√
w−l
k

}
or {l, h}.

There must be at least one sender, say sender i, who gets payoff ≤ 1
2

on path. That sender
can profitably deviate to the uninformative distribution: in response the receiver would only
learn from the other sender as dictated by Lemma A.1 (setting x = µ). It is verified that the
deviating sender’s payoff is then > 1

2
. ■

A.3 Proof of Proposition 3.1

“Only if ”: Suppose that there is no equilibrium in which both senders offer full info. Then,
Proposition 3.2 tells us that either k ≤ 1

2
, or k > 1

2
and µ ̸∈ [ 1

4k
, 1 − 1

4k
]. Lemma A.1 and

Lemma A.2 tell us the receiver’s unique best response (on path) to full info from both senders.
Now we need to show that there is no equilibrium where she gets her first-best payoff. For
the sake of contradiction, suppose that there is such an equilibrium–and where sender i

offers some pi. From the discussion in the main text, this just means that the receiver’s best
response on path to (p1, p2), is the same as the best response to full information. We argue,
however, that the same deviations that we identified for full info, also work for this supposed
equilibrium. Recall the nature of those deviations from A.2: they do not make a difference if
the deviating sender is visited first, and restrict learning if visited second. Now if p1, p2 is the
equilibrium under consideration and the same deviation occurs, the receiver’s response to
this deviation would be as under full info: if she visits the deviating sender first, she would
realize she can continue to choose as on path; if she visits him second, she would make the
same adjustment as under the full info scenario.

Thus, since the deviation was profitable under full info, it must be profitable here, and
p1, p2 cannot be an equilibrium. ■

A.4 Proof of Proposition 3.2

See the proof of Proposition 3.7, setting l = 0, h = 1.

A.5 Proof of Lemma 3.3

See the proof of Lemma A.1, setting l = 0, h = 1 and k = 1.
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A.6 Proof of Lemma 3.4

See the proof of Lemma A.2, setting l = 0, h = 1 and k = 1.

A.7 Proof of Lemma 3.5

See the proof of Lemma A.3, setting l = 0, h = 1 and k = 1.

A.8 Proof of Proposition 3.6

Let k > 1
2

and µ ∈ [ 1
4k
, 1− 1

4k
]. As shown in Appendix A.2, one of the receiver’s best responses

to full information (l = 0, h = 1) from both senders is to choose the garbling
{
µ− 1

4k
, µ+ 1

4k

}
at stage 1 and to learn nothing at stage 2.

Suppose sender i offers a distribution of which
{
µ− 1

4k
, µ+ 1

4k

}
is a garbling. Then, the

aforementioned best response to full information is permissible, and thus continues to be a
best response. Suppose the receiver chooses this response.

Then if a sender unilaterally deviates and is the one to be visited first, the receiver may
respond by choosing {µ} and visiting the other sender, choosing

{
µ− 1

4k
, µ+ 1

4k

}
for him.

Exactly as in the proof for existence of a full information equilibrium (Proposition 3.7 for
h = 1, l = 0), Lemma A.3 can be used to argue that the deviation cannot be profitable. ■

A.9 Proof of Proposition 5.1

Proof. When k = 0, Claim 4.1 tells us that for µ ≤ 1
2

the expected type of the selected sender
is 4

3
µ, and for µ > 1

2
this is

4

3
(1− µ)

(
1

µ
− 1

)2

+

[
1−

(
1

µ
− 1

)2
]
.

Suppose that k > 1/2 and µ ∈
[

1
4k
, 1− 1

4k

]
. The expected type of the selected sender in the

full information equilibrium is
1

2
µ+

1

2

(
µ+

1

4k

)
.

Straightforward algebra then yields the result. ■

A.10 Proof of Proposition 6.1

Suppose that both senders offer full information. We first determine the receiver’s best
response. Suppose that Sender 2 is visited second (we’ll revisit this assumption shortly).
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Lemma A.4 (Stage 1 optimal garbling). Any distribution with expectation µ and support
drawn from the following sets is optimal for the receiver at stage 1.

1.
[
µ2 − 1

4
, 3
4

]
∪
{
µ2 +

1
4

}
if µ2 ∈

[
1
2
, 3
4

]
and µ1 ∈

[
µ2 − 1

4
, µ2 +

1
4

]
.

2.
[
µ2 − 1

4
, 3
4

]
if µ2 ∈

[
3
4
, 1
]

and µ1 ∈
[
µ2 − 1

4
, 3
4

]
.

3.
[
1
4
, µ2 +

1
4

]
∪
{
µ2 − 1

4

}
if µ2 ∈

[
1
4
, 1
2

]
and µ1 ∈

[
µ2 − 1

4
, µ2 +

1
4

]
.

4.
[
1
4
, µ2 +

1
4

]
if µ2 ∈

[
0, 1

4

]
and µ1 ∈

[
1
4
, µ2 +

1
4

]
.

Proof. See the proof of Lemma A.2, setting l = 0, h = 1 and k = 1 and using µ2 as the mean
for Sender 2 and µ1 as the mean for the Sender 1. ■

Note that we have not yet determined which sender should be visited first. Our first step
is to show that if µ1 and µ2 satisfy one of the conditions for Lemma A.4 when Sender 2

is visited second, then they satisfy one of the conditions for Lemma A.4 when Sender 2 is
visited first. Formally,

Lemma A.5. One of the four parametric restrictions in Lemma A.4 holds if and only if one
of the four parametric restrictions in Lemma A.4 holds in which µ1 and µ2 are replaced with
each other.

Proof. Let us begin by looking at the parametric conditions given in bullet points 1 and 3

of Lemma A.4. By symmetry it suffices to assume that one of these two pairs of conditions
holds for the scenario in which Sender 2 is visited second, and show that that implies that
one of the four pairs of conditions for the scenario in which Sender 2 is visited first must hold.
Observe that the conditions for bullet points 1 and 3 reduce to |µ1 − µ2| ≤ 1

4
and µ2 ∈

[
1
4
, 3
4

]
.

It is easy to see that if µ1 ∈
[
1
4
, 3
4

]
then we are done. What if µ1 /∈

[
1
4
, 3
4

]
? WLOG suppose

that µ1 <
1
4
. By assumption we must have µ2 − 1

4
≤ µ1 and µ2 ≥ 1

4
. Hence, condition 4 (with

µ2 and µ1 transposed) must hold.
Next, we turn our attention to the conditions given in bullet points 2 and 4. WLOG it

suffices to focus on the conditions in bullet point 2. As we did in the previous paragraph, it
suffices to assume that these conditions hold for the scenario in which Sender 2 is visited
second, and show that that implies that one of the four pairs of conditions for the scenario
in which Sender 2 is visited first must hold. By construction, µ2 ≤ µ1 +

1
4

and µ1 ∈
[
1
2
, 3
4

]
.

Moreover, µ2 ≥ µ1 > µ1 − 1
4
, and so condition 1 (with µ2 and µ1 transposed) must hold.

■

Assuming that one of the parametric conditions hold, the second step is to show that
the receiver’s expected payoff under any optimal protocol in which we assume that Sender 1
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is visited first is the same as her expected payoff under any optimal protocol in which we
assume Sender 2 is visited first. Hence, it does not matter which sender she visits first, and
so she can break ties in that manner in any way that she chooses.

This step requires just a couple sentences to prove: in each of the four cases described in
Lemma A.4, there is a stage 1 optimal distribution in which the receiver learns nothing at
the first sender. Her expected payoff under the optimal search protocol is thus

µ2
1 + µ2

2 +
µ1 + µ2

2
− 2µ1µ2 +

1

16

which is invariant to an exchange of µ1 and µ2. Finally, we arrive at the heterogeneous means
analog to Proposition 3.2:

It suffices to show that conditional on being the first sender to be visited, the probability
of being selected is the same regardless of which stage 1 optimal garbling is chosen by
the receiver. The remainder of the proof follows analogously to the proof of Lemma A.3.
Alternatively, observe that it follows from the fact that probability of the first sender being
selected conditional on a first stage belief x is either 0, 1, or a function that is affine in x.
■
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