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Abstract

This note studies the e�ect of the availability of a test for a virus on the public health of

a population. It is shown by example that the existence of a freely available and moderately

informative test for a virus may lower society’s welfare in comparison to the case where no

test exists or access to the test is restricted. In this setting, any test provided to any subset of

agents who would �nd it optimal not to isolate absent the test improves welfare.
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1 Introduction

In 2020, the virus COVID-19 swept through the globe. One particular di�culty presented by

the virus is that infected individuals may be virtually asymptomatic and carry the virus without

knowing it. Moreover, in the early stages of the pandemic, there were well-publicized shortages of
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medical tests for the virus, which made it impossible to test everyone, even everyone with symp-

toms. To get around this, various solutions were proposed, including testing people in groups

(Gollier and Gossner (2020)) and testing for inconclusive symptoms like a high temperature.1

This purpose of this note is to present a simple example that illustrates that the existence (and

availability) of a moderately informative test can actually lower social welfare in comparison to

the scenario when no such test exists (or is available). This analysis, thus,

1. Supports the regulation of costless tests;

2. Provides a word of caution against moderately informative tests; and

3. Emphasizes the importance of the choice as to whom should be tested.

In the model we explore, there is a heterogeneous population of agents with di�erent expo-

sure likelihoods. Each agent has a simple decision: whether to stay home and isolate (or self-

quarantine) or refrain from isolating and instead go out. An agent incurs a reward from not

isolating, but possibly su�ers a cost as well–she encounters others if out and neither wishes to

become infected (if she is not infected) nor wishes to infect others (if she is infected). Thus, the

prevalence of infected people who are not isolating is an endogenous equilibrium object deter-

mined by the individual isolation decisions of the agents.

Each agent’s welfare is a�ected by the decisions of others, and crucially, a change in the in-

fection rate of those out and about a�ects all of those who are not isolating. Accordingly, the

mechanism that generates the possible welfare loss due to a test is the worsening of the partici-

pant pool. A false negative from a less than fully informative test can encourage risky people to

refrain from isolating, increasing the chances of disease transmission. Although the information

provided is itself valuable, the gain in welfare as a result of this information is outweighed by the

increased disease prevalence among those an agent encounters.

The frequency of false negatives for the COVID-19 virus is well-documented. Indeed, the most

common test for the virus, the reverse transcriptase polymerase chain reaction (RT-PCR) test has

false negative rates at initial presentation of symptoms that range from 30 to 40 percent (Yang

et al. (2020); Fang et al. (2020); and Ai et al. (2020)). Moreover, these rates can vary considerably
1See, e.g., this April 4th CNBC article.
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depending on the time since exposure (Kucirka et al. (2020)). CT scans may be more e�ective

(Fang et al. (2020); Ai et al. (2020); and Caruso et al. (2020)), but even those may have high false

negative rates in the �rst few days following the onset of symptoms (Kanne et al. (2020)).

In this note, the agents are completely rational, yet can be made worse o� by the availability

of an imperfect test. This is because of the strategic nature of the societal interaction. If this

were merely a decision problem for each agent, any test would increase welfare.2 Moreover, it is

understood that an imperfect test can encourage sub-optimal behavior if people misunderstand

or if people do not realize that the test is �awed. Here we discover that an imperfect test can be

detrimental even when its quality is common knowledge and when agents have no behavioral biases.

Although we �nd that there are some tests and testing protocols that can lower welfare, Propo-

sition 2.2 reveals that any test, provided it is given to people who have a (relatively) low likelihood

of exposure–those who would refrain from isolating absent a test–is welfare improving, since it

both provides those agents with more information but also ensures that the pool of agents par-

ticipating in society improves. That is not to say that that group of people is the optimal group

to test, merely that such a protocol, according to this framework, cannot reduce welfare.

The last statement leads us to the following caveat: in this paper, we do not attempt to char-

acterize optimal testing protocols, nor do we provide a thorough cost-bene�t analysis of the

participation/social-distancing trade-o�. These are both worthwhile concerns, yet the goal of

this paper is more modest. Instead, we merely wish to expose a counter-intuitive aspect to test-

ing, one that has seemingly been heretofore unmentioned and overlooked.

2 The Model

Let us consider the following formal model. There is a population that consists of a continuum

of agents with measure 1. The Bernoulli random variable, Θ, corresponds to the infection status

of an agent, where Θ = 1 denotes that an agent is infected and Θ = 0 denotes that an agent

is not infected. The only source of heterogeneity is an agent’s prior exposure to the disease,

which we term her type. That is, an agent’s type is her likelihood of infection, � ∈ [0, 1], where
2See e.g. Ramsey (1990); Blackwell (1951), who (among many others) establish that the well-known result that in

decision problems, the value of information is always positive.
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� ∶= ℙ (Θ = 1). We impose that the population distribution of types has an atomless3 cumulative

distribution function F with support on [0, 1].

Each agent has a simple choice: either isolate (action I ) or participate (action P ). If an agent

isolates, she obtains a payo� normalized to 0. If an agent participates, then with probability �

she interacts with someone who is infected, where � is the average infection likelihood of those

participating. Hence, � is the chance that a agent who is not isolating encounters an infected

person. It is important to keep in mind that � is an endogenous equilibrium object, determined

by the isolation decisions of the agents in the populace.

If an agent of type � participates then her payo� is

u (P ; �, � ) = A − B� (1 − � ) − C(1 − �)�

where A ≥ 0 is her reward from participating, C ≥ 0 is her loss from becoming infected, and B ≥ 0

is her loss from infecting someone else. Note that, in contrast to � , A, B, and C are exogenous

parameters.

The solution concept that we use is Nash Equilibrium: given the actions of the other agents,

no agent has a (unilateral) pro�table deviation. Due to the linearity of the payo� from P in

an agent’s type, any equilibrium must be of a particular cut-o� form: all agents whose types

are above (or below) a certain threshold will isolate, and all those whose types are below (or

above) that threshold will not. Because there is a coordination-like aspect of the game, there may

exist two kinds of equilibria; both those in which high types isolate and low types participate,

but also the inverse. Throughout we restrict attention to the �rst class of equilibria, since it

seems to correspond closest to people’s behavior during the pandemic–by and large, sick people

are encouraged to stay home, not go out. Moreover, the condition below ensures that such an

equilibrium exists.

We begin by looking at the case in which there is no test, so that we can subsequently com-

pare welfare to the case in which a test is available. We impose the following condition on the

parameters:

Condition 2.1. There exists some type �̂ such that
3This assumption is not signi�cant, but eases notation.
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(i) A + ((B + C) �̂ − B) � − C�̂ ≥ 0, for all � ≤ �̂, and

A + ((B + C) �̂ − B) � − C�̂ ≤ 0, for all � ≥ �̂,

where

�̂ = � (�̂) ∶=

∫
�̂

0
xdF (x)

F (�̂)

and

(ii) �̂ ≤

C

B + C

�̂ is a conditional expectation: it is the average infected likelihood of those participating (those

whose type, �, is less than the cuto� type, �̂). Inequality (ii) ensures that in this equilibrium, the

payo� of each type � ∈ [0, �̂] is decreasing in � , which is realistic: the welfare of the participants

gets worse as it becomes more likely that they encounter infected individuals.

A necessary condition for Condition 2.1 is that

(B + C) �̂ ≤ B

That is, given �̂ , an agent’s participation payo� is decreasing in her own type. If Condition

2.1 holds, then trivially there exists an equilibrium in which all types � < �̂ participate and all

types � > �̂ isolate (indeed the �rst part of the condition is necessary and su�cient for such an

equilibrium to exist). Denote the aggregate payo� from this equilibrium by W , viz.,

W ∶=
∫

�̂

0

{A + ((B + C) �̂ − B) x − C�̂} dF (x)

Clearly, this is an exceedingly simple model: the scenario is static and there are no bene�ts to

testing other than to guide agents’ isolation decisions. For instance, there is no contact tracing in

this model, nor are there bene�ts to society from obtaining statistics about the spread, morbidity,

or mortality of the disease. These are all important considerations for determining optimal testing

policies.

Furthermore, outside of their infection likelihoods, agents in this model are homogeneous.

We do not distinguish between essential and inessential workers, say, which is another vital

component of a thorough cost-bene�t analysis of testing. The model’s homogeneity in this di-

mension also does not allow us to tackle the subtle issue that, in reality, not all agents with the

same infection likelihood are the same. Perhaps some high-likelihood agents are travelers who
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have recently returned from a virus hot-spot, whereas others are doctors, who are likely to be

sick by virtue of their occupation. It is easy to see how distinguishing between these sorts of

agents could be very important when choosing whom to test.4

Yet another simpli�cation is that the agents who participate interact with each other ran-

domly. They cannot choose the types with whom they interact, and neither the encounter rate of

an agent nor whom an agent meets is a�ected by her infection probability. Again, this is perhaps

unrealistic–a doctor is more likely to come into contact with infected individuals than a traveller

who has returned home from a hot-spot, yet our model does not allow for this distinction.

Naturally, a model intended to guide policy directly should include many, if not all, of these

details that are conspicuously absent from this paper. However, as is noted above, the intent

of this paper is not prescriptive. Our goal is to discover and understand the counterintuitive

notion that testing may lower welfare. The model is kept deliberately simple in order to clearly

illustrate the intuition of the result. We should expect similar incentives to be present in a more

complicated model, but they might be hidden or obfuscated by other factors.

2.1 Testing Participants Cannot Hurt

Now let us introduce testing to the scenario and derive our �rst result. Formally, a test, � , is a

stochastic map:

� ∶ {0, 1}→ Δ (S)

where S is some (compact) set of signal realizations. In the example that we explore later on, we

assume that S consists merely of two signal realizations–a positive result and a negative result–

but for now, we need not make such a restriction.

Then,

Proposition 2.2. Let Condition 2.1 hold. Then, any test, � , given to any subset of types in the

interval [0, �̂] begets an equilibrium that yields society a payo� that is (at least weakly) greater than

W .

Proof. It su�ces to show that the payo� of each type � ∈ [0, �̂] (weakly) increases in expectation.

Moreover, recall that the second part of Condition 2.1 implies that the payo� of each type � ∈ [0, �̂]
4I thank an anonymous referee for highlighting this aspect of optimal testing.
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is decreasing in � . Hence, if the pool of agents in society improves (� decreases) the payo�s of

those agents increase.

If the testing protocol begets an equilibrium in which the new average likelihood of partici-

pants (� ∗) is equal to �̂ , then in expectation, the payo� of each type who is tested must weakly

improve (this follows from Ramsey (1990) and Blackwell (1951)). Naturally, this payo� is further

improved if � ∗ ≤ �̂ and so we need only establish that there is an equilibrium in which all types

� ∈ [0, �
∗
], with �∗ ≥ �̂ participate, and � ∗ ≤ �̂ .

Let G be the new distribution over types (beliefs about infection likelihood) as a result of

the test. Note that by de�nition,5 G is a mean-preserving spread of F .6 There are two cases to

consider: Case I, where G(�̂) = F (�̂); and Case II, where G(�̂) < F (�̂). The �rst case trivially

yields the desired result (the pool of participants and the participation decisions of the agents are

unchanged).

Let us consider Case II and search for an equilibrium in which all types � ∈ [0, �∗] participate,

where �∗ ≥ �̂. It is straightforward to see7 that

�̂ >

∫
�̂

0
xdG(x)

G (�̂)

De�ne

� (�) ∶=

∫
�

0
xdG(x)

G (�)

which is obviously increasing in �. Accordingly, since we have assumed that Condition 2.1 holds,

there must exist some �′ > �̂ such that � (�′) = �̂ . Clearly,

' (�) ∶= A + ((B + C) � (�) − B) � − C� (�)

is continuous in �. Evidently, ' (�̂) is positive and ' (�′) is negative, so by the intermediate value

theorem there exists some �∗ ∈ (�̂, �′), with ' (�
∗
) = 0 and � (�∗) < �̂ . Consequently, there exists

an equilibrium in which all types � ∈ [0, �∗] participate, where �∗ > �̂ and � ∗ ∶= � (�∗) < �̂ .
5Indeed, this is precisely the de�nition of a mean-preserving spread introduced in Rothschild and Stiglitz (1970).
6Moreover, since F is atomless, G will not have atoms except possibly at 0 and 1. The proof proceeds with the

implicit assumption that G does not have an atom on 1, but that is just to ease notation and simplify the arguments.

If G does have an atom there, the result continues to hold.
7Refer to Lemma A.1 in the Appendix.
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Figure 1: Example 2.1.1 Splitting of Beliefs (Types)

Figure 2: Example 2.1.1 Old (F , Dashed Lines) and New (G, Solid Lines) Distributions of Types

Note that because belief is a martingale, for each agent that is tested, there must be some

test result that ensures that her posterior type (remember, this is her posterior belief about her

infection likelihood following a test result) is weakly less than �̂ and hence �∗. ■

2.1.1 An Example

To add intuition to the proof, let us brie�y explore an example. Namely, let F be the uniform

distribution on [0, 1] and the parameters be such that �̂ = 1

2
. Consider a binary test, � , that is

given to types � ∈ [
1

4
,
1

2]
, with

� (+|1) = � (−|0) =

2

3
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where the set of test outcomes is S = {+, −}. Accordingly, each type in [
1

4
,
1

2]
will be “split" into

two new types: with probability �+1

3
, outcome + will realize and the posterior belief (new type)

of agent � will be 2�

1+�
∈ [

2

5
,
2

3]
; and with probability 2−�

3
, outcome − will realize and the posterior

belief (new type) of agent � will be �

2−�
∈ [

1

7
,
1

3]
. This splitting is depicted in Figure 1.

Furthermore, Figure 2 depicts the new cdf of types, G. Also depicted are ∫
�

0
G(x)dx and

∫
�

0
F (x)dx , which illustrates that G is a mean-preserving spread of F .

3 How Tests Can Lower Welfare

Let us turn our attention to a simpli�ed version of the previous section’s model. We reduce

the model as follows: now, the population is inhabited by just two types of agents, !H (high

likelihood) and !L (low likelihood). Proportion q = 3/4 of the population are !L.

High likelihood agents, !H , are infected with (prior) probability �H , where

�H ∶= ℙ (Θ = 1|!H ) = 5/8

Likewise, �L denotes the prior probability that type !L is infected:

�L ∶= ℙ (Θ = 1|!L) = 1/8

Recall that an agent may choose either to isolate (I ) or not (P ). We impose the following values

for the parameters: A, her payo� from participation, equals 5/4; B, her penalty from infecting

someone uninfected, is 2; and C , her penalty from becoming infected, is 4. Thus, if she has a

belief � that she is infected, her payo� from not isolating (P ) is

u (P ; �, � ) =

5

4

− 2� (1 − � ) − 4 (1 − �) �

which simpli�es to

u (P ; �, � ) =

5

4

− 4� − (2 − 6� ) � (1)

With no testing, the unique equilibrium is that in which agents of type !H isolate and agents

of type !L participate. Since only agents of type !L are participating, the likelihood that an agent

who is not isolating is infected is merely the likelihood that an agent of type !L is infected; viz.,

� = �L = 1/8. On path, an agent of type !L obtains a payo� of 19/32, which is bigger than 0, her
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payo� from isolating. Should an agent of type !H deviate and participate, she would obtain a

payo� of −1/32, less than her isolation payo� of 0.

In fact, an agent of type !H would always prefer to isolate (since �H is so high), unless � were

precisely 0, which could never happen at equilibrium. Consequently, this equilibrium is unique.

Without testing, the aggregate welfare for society, V , is

V = q
(

5

4

− 4� − (2 − 6� ) �L)
=

3

4
(

19

32
)
=

57

128

≈ .45

3.1 After the Introduction of a Test

We introduce a binary test to the scenario. The set of signal realizations is S ∶= {+, −}, corre-

sponding to a positive test and a negative test, respectively. Consequently, � can be written in

terms of the variable p, where

p ∶= � (−|1) , and � (−|0) = 1

The situation can be conveniently described by the following joint distribution of S and Θ for an

agent with prior �i , i = H, L:

Θ ⧵ S − + ℙ (Θ)

1 �ip �i (1 − p) �i

0 (1 − �i) 0 1 − �i

ℙ (S) �ip + (1 − �i) �i (1 − p) 1

Note that in this model there are no false positives. This is done for expositional convenience

and to allow us to focus on the e�ect of the high false negative rates noted in the introduction.

Next, we look at the Nash Equilibria of the participation game with testing. As in Section 2,

we focus on equilibria in which agents who think their infection likelihood is low participate and

agents who think their infection likelihood is high do not. In this example, absent a test, this is the

only equilibrium that exists, and we suppose that this is still the equilibrium selected following a

test. To put another way, we assume that introduction of the test does not qualitatively alter the

equilibrium selected to an (ostensibly less realistic) equilibrium in which low types isolate and

high types participate.
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We consider three cases: in the �rst, only agents of type !H have access to the test.

3.1.1 Case 1 (Testing only High Likelihood)

Here we suppose that only agents of type !H may take the test. There are three regions of false

negative probabilities, p, each of which beget a di�erent equilibrium. If p is su�ciently low

(p ≤ .73), then agents of type !L participate and agents of type !H participate if and only if they

get a negative test result. On the other hand, if p is in an intermediate range (.9 ≥ p ≥ .73), then

such an equilibrium no longer exists. All agents of type !L continue to participate, but now only

a fraction of the types !H who have received negative results participate. Finally, if p is too high,

only agents of type !L participate.

We start by calculating the values of p such that at equilibrium agents of type !L participate

and agents of type !H participate if and only if they get a negative test result.

The crucial variable is � , the likelihood of encountering an infected agent while participating.

Using the law of total probability, it is

�
H

p
=

q�L + (1 − q) �Hp

q + (1 − q) (�Hp + 1 − �H )

=

5p + 3

5p + 27

Using Bayes’ law, the probability that type !H is infected after a negative test is

�
−

H
=

�Hp

�Hp + 1 − �H

=

5p

5p + 3

(2)

Then, using Expression 1, agents of type !H will participate after − if and only if

5

4

− 4�
H

p
− (2 − 6�

H

p ) �
−

H
≥ 0 (3)

which simpli�es to p ≤ 9

5
−

12

5

√

5
≈ .73.

It is easy to verify that agents of type !L prefer to participate for this range of p. Moreover,

clearly, agents of type !H have no pro�table deviation to action P after +, since they are sure that

they are infected.

Should Inequality 3 fail to hold, there is no longer an equilibrium in which all agents of type

!H who have obtained a negative test participate. However, for moderate p, there is also no

equilibrium in which none of those agents participate, since the resulting � would be low enough

11



to entice participation. Instead, fraction � of the agents of type !H who have seen a negative test

participate.

Observe that �−
H

is the same as above, but the likelihood of encountering an infected agent is

shaped by � . This is

� (� ) =

q�L + (1 − q) ��Hp

q + (1 − q) � (�Hp + 1 − �H )

=

5p� + 3

5p� + 3� + 24

(4)

Because some of the agents of type !H isolate after a negative result and others do not, we

need them to be indi�erent as to whether they participate after −. Thus, using Expression 1,

5

4

− 4� (�
∗

) − (2 − 6� (�
∗

)) �
−

H
= 0

Substituting in for � (� ∗), we obtain

�
∗
=

24 (10p − 9)

5 (25p
2
− 42p + 9)

(5)

which is feasible (lies in the interval [0, 1]) provided .73 ≤ p ≤ .9. Substituting � ∗ into Equation 4

we obtain the equilibrium infection likelihood

� (�
∗

) =

15 (1 − p)

48 − 40p

If p ≥ .9, then the only equilibrium yields the same payo� as the scenario without testing. The

test is too uninformative to persuade any agents of type !H and so as in the case without testing,

only agents of type !L participate, yielding a payo� of .45.

We �nish the analysis of Case 1 by inspecting aggregate welfare as a function of the prob-

ability p, V H (H for “High likelihood"), the details of whose derivation we leave to Appendix

A.1:

V
H
=

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

125p
2
−1530p+1917

128(5p+27)
, 0 ≤ p ≤

9

5
−

12

5

√

5

−
105p−9

640p−768
,

9

5
−

12

5

√

5
≤ p ≤

9

10

57

128
,

9

10
≤ p ≤ 1

Comparing this to V , aggregate welfare when there are no tests, we see that V H
< V = 57/128

for p ∈ (.21, .9), and V H
= V for p ∈ [.9, 1]. Moreover, for all p ∈ [.73, .9], there is a Pareto decrease

in welfare: agents of type !H are no better o� and agents of type !L are strictly worse o�.
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Figure 3: Society’s Welfare in Cases 1 (V H , Solid Line), 2 (V L, Solid Line), 3 (V T , Dashed Line), &

With No Testing (V , Dashed Line)

3.1.2 Case 2 (Testing only Low Likelihood)

What if those tests from Case 1 were instead given to agents of type !L? To ensure a fair com-

parison, suppose that there are only enough tests to serve measure 1/4 of agents (so only 1/3 of

agents of type !L get tested). At equilibrium, untested agents of type !L participate, tested agents

of type !L participate if and only if they have a negative test result, and agents of type !H do not

participate.

Now,

�
L

p
=

2q

3
+

q

3
p

2q

3
+

q

3
(�Lp + 1 − �L)

�L =

p + 2

p + 23

It is obvious that agents of type !L participate after a negative test since they would even with a

perfectly uninformative test (p = 1). Likewise, they do not participate after a positive test since

they are sure that they are infected. Agents of type !H do not participate since �
L

p
is strictly

greater than 0.

Consequently, aggregate welfare as a function of p is V L (L for “Low likelihood"):

V
L
=

2q

3
(

5

4

− 4�
L

p
− (2 − 6�

L

p ) �L)
+

q

3

(�Lp + 1 − �L)(

5

4

− 4�
L

p
− (2 − 6�

L

p ) �
−

L)

=

5p
2
− 274p + 1637

128 (p + 23)
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where �−
L
, the probability that type !L, is infected after a negative test is obtained using Bayes’

law. Evidently, V L
≥ V for all p.

This case yields precisely the result that we uncovered in Section 2.1. Namely, any test applied

to any subset of the population whose members are participating in the absence of a test must

improve society’s welfare.

3.1.3 Case 3 (Testing Everyone)

What if both types of agents have access to the test? Perhaps unsurprisingly, this case is quali-

tatively identical to Case 1. For a su�ciently low p (p ≤ .76), agents of type !L participate and

agents of type !H participate if and only if they get a negative test result. If p is in an intermediate

range (.91 ≥ p ≥ .76), then all agents of type !L continue to participate, and only a fraction of the

types !H who have received negative results participate. If p is too high, only agents of type !L
participate.

Leaving its derivation to Appendix A.1–since it is identical to the work for Case 1 mutatis

mutandis–aggregate welfare as a function of p is V T :

V
T
=

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

5p
2
−42p+45

16(p+3)
, 0 ≤ p ≤

39−6

√

11

25

3p

24−20p
,

39−6

√

11

25
≤ p ≤

69−2

√

534

25

15p
2
−294p+735

128p+896
,

69−2

√

534

25
≤ p ≤ 1

Evidently, V T
≤ V for p ∈ [.51, .9]. As in Case 1, there is an interval of p values, [.76, .9],

that begets a Pareto decrease in the equilibrium welfare for society. Curiously, Case 3 illustrates

that an extremely uninformative test can be strictly welfare improving. It provides some infor-

mation to agents of type !L but is insu�ciently informative to persuade any agents of type !H
to participate and so does not worsen the participant pool.

Unsurprisingly, welfare for society is higher when everyone can get tested (Case 3), than

when only agents of type !H can get tested (Case 1). In both cases, an increase in � drives the

decrease in welfare, but in the Case 3, the e�ect of this increase in � is not as pernicious, due to

the information acquired by the low likelihood types.

A graph of society’s welfare as a function of p when there is no testing and in each of the

three cases is depicted in Figure 3.
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Finally, recall that in the example, the test does not generate false positives. How does the false

positive rate a�ect welfare? As it turns out, the e�ect of the false positive rate is also ambiguous.

It is possible that a high false positive rate could be better for society due to its e�ect on the

isolation decisions of agents of type !H . Naturally, there are also regions of the parameters in

which welfare is decreasing in the false positive rate, which is driven by the intrinsic value of

information.

4 Brief Discussion

Determining the optimal way to guide a society through a pandemic and calculating optimal

testing protocols is a challenging task. Such an undertaking is made even more di�cult by the

myriad of constraints that must be satis�ed–logistical, resource, cognitive, and political, to name

a few. Here we bypass such concerns and merely explore a counter-intuitive aspect of testing

engendered by the interconnected nature of society.

Namely, we �nd that the introduction of a moderately informative test can make society worse

o� and can even result in a Pareto decrease in welfare. This is because the test worsens the pool

of participants–it makes it more likely that agents encounter infected agents who, thanks to the

test, are su�ciently con�dent that they are not infected due to a false negative produced by the

test.

On the other hand, as Proposition 2.2 illustrates, every test is welfare improving, so long as

it is given (or available) only to agents who participate in equilibrium in the absence of the test.

Such a protocol guarantees that the pool of participants in society improves and provides valuable

information to agents, to boot.

As we have stressed throughout, this paper does not prescribe optimal testing protocols.

There are a number of contemporaneous papers that do, under a variety of di�erent assump-

tions and set-ups. Kasy and Teytelboym (2020) allow for perfectly informative (but costly) tests,

and investigate the dynamic problem of how to test individuals in order to both inform quaran-

tine protocols and also learn about the virus’s prevalence rate. Ely et al. (2020) assume a �nite

quantity of heterogeneous tests and study how to allocate such tests to heterogeneous agents.

Lipnowski and Ravid (2020) explore a similar problem, but look at how to pool tests optimally.
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Deb et al. (2020), in turn, allow for targeted testing and transfers to agents.

Crucially, in comparison to this paper, none of those papers contain a strategic interaction

between the agents in the population. In each such paper, agents and planners are merely tasked

with decision problems and so the value of information is positive. The important decision then, is

the choice of whom to test or how to test, given limited resources or costly tests. As we encounter

here, introducing strategic concerns adds a novel wrinkle, one that may be important to keep in

mind when determining policy.

Our discovery that information may be detrimental is related to the phenomenon discovered

by Kremer (1996), who shows that increased prevalence of the AIDS virus may worsen the pool

of available partners due to the fatalism of high-activity people. In this note, the welfare loss is

also due to a worsened pool of participants, which e�ect is driven by not by fatalism but by the

increased (rational) con�dence of high-likelihood individuals consequent to negative test results.

A number of other recent papers have pointed out other counterintuitive incentives in models

of epidemics and disease transmission. Those include Talamàs and Vohra (2020), who show that

the introduction of a moderately e�ective vaccine can result in Pareto losses in welfare for society;

and Heinsalu (2020), who illustrates that increasing the infection risk early in a pandemic may be

optimal. However, the mechanism behind the result in Talamàs and Vohra (2020) is completely

di�erent to that in this paper. There, the authors assume a network structure and allow agents to

choose with whom they match. In contrast to this paper, �xing the partnership structure of their

model or imposing that matching is random ensures that even a partially-e�ective vaccine is a

Pareto improvement to welfare. In their paper, it is only when agents may choose with whom to

match that imperfect vaccines can have a destabilizing e�ect on society’s partnership network,

begetting a denser (and hence worse) network, and thereby lowering welfare.

With that in mind, it would be interesting to investigate whether the results of this paper

extend to a �nite population with a network structure. Likewise, it is unclear how allowing

agents to make more sophisticated decisions–letting them choose not just whether to isolate but

also with whom to interact–would a�ect the �ndings. Given the results of Talamàs and Vohra

(2020), it is reasonable to suspect that a similar destabilizing e�ect could manifest as the result of

an imperfect test.
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A Omitted Results and Derivations

Lemma A.1.

�̂ =

∫
�̂

0
xdF (x)

F (�̂)

>

∫
�̂

0
xdG(x)

G (�̂)

Proof. Directly, using integration by parts

∫
�̂

0
xdF (x)

F (�̂)

= �̂ −

∫
�̂

0
F (x)dx

F (�̂)

> �̂ −

∫
�̂

0
F (x)dx

G (�̂)

> �̂ −

∫
�̂

0
G(x)dx

G (�̂)

=

∫
�̂

0
xdG(x)

G (�̂)

which used the facts that F (�̂) > G (�̂) and G is a mean preserving spread of F , of which one

de�nition is that

∫

�

0

G(x)dx ≥
∫

�

0

F (x)dx

for all � ∈ [0, 1] (an equivalent statement is that F second order stochastically dominates G). ■
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A.1 Sections 3.1.1 and 3.1.3 Aggregate Welfare Derivations

Case 2 (Section 3.1.2) is omitted, since the lone derivation may be found in the text.

A.1.1 Case 1 (Testing only High Likelihood)

For 0 ≤ p ≤ 9

5
−

12

5

√

5
≈ .73, aggregate welfare, V H , is

V
H
= q

(

5

4

− 4�
H

p
− (2 − 6�

H

p ) �L)
+ (1 − q) (�Hp + 1 − �H )(

5

4

− 4�
H

p
− (2 − 6�

H

p ) �
−

H)

=

125p
2
− 1530p + 1917

128 (5p + 27)

For 9

10
≥ p ≥

9

5
−

12

5

√

5
, since each high type, !H is receiving a payo� of 0, we have

V
H
= q

(

5

4

− 4� (�
∗

) − (2 − 6� (�
∗

)) �L)
= −

105p − 9

640p − 768

If 1 ≥ p ≥ 9

10
, aggregate welfare is the same as in the case without a test; namely, V H

=
57

128
≈ .45.

A.1.2 Case 3 (Testing Everyone)

First, let 0 ≤ p ≤ 39−6

√

11

25
≈ .76. Let us calculate �T

p
. Directly,

�
T

p
= p

q�L + (1 − q) �H

q (�Lp + 1 − �L) + (1 − q) (�Hp + 1 − �H )

=

p

p + 3

Then, aggregate welfare, V T , is

V
T
= q (�Lp + 1 − �L)(

5

4

− 4�
T

p
− (2 − 6�

T

p ) �
−

L)

+ (1 − q) (�Hp + 1 − �H )(

5

4

− 4�
T

p
− (2 − 6�

T

p ) �
−

H)

which simpli�es to

V
T
=

5p
2
− 42p + 45

16 (p + 3)

For 39−6

√

11

25
≤ p ≤

69−2

√

534

25
≈ .91, we have

V
T
= q (�Lp + 1 − �L)(

5

4

− 4� (�
∗

) − (2 − 6� (�
∗

)) �
−

L)
=

3p

24 − 20p

If 1 ≥ p ≥ 69−2

√

534

25
, aggregate welfare is

V
T
= q (�Lp + 1 − �L)(

5

4

− 4�
−
− (2 − 6�

−

) �
−

L)
=

15p
2
− 294p + 735

128p + 896

where we used the fact that

�
−
= �

−

L
=

p

7 + p
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