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1 Theorem 3.1 and Corollary 3.2 Proof
The purpose of this supplement is to prove Theorem 3.1 and Corollary 3.2 from Whitmeyer (2018). Note that
these results, or variants thereof, were derived independently in several other papers–Spiegler (2006), who
solved an problem isomorphic to this one for the mean �xed at 1/2; Boleslavsky and Cotton (2015) and Albrecht
(2017), who solved a possibly asymmetric two player version; and Au and Kawai (2020).

This appendix is a condensed and much abridged version of the (now defunct) working paper Hulko and
Whitmeyer (2017).

Theorem 1.1 (Theorem 3.1 in Whitmeyer (2018)). Let the search cost c = 0.

1. If � ≥
̄
� then the unique symmetric pure strategy equilibrium is for each �rm to play distribution F ∗, de�ned

as

F ∗(x) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(1 − a) ( xs )
1
n−1 , 0 ≤ x < s

(1 − a), s ≤ x < 1
1, 1 = x

where
a = � − �(1 − a)n, and s = n�(1 − a)n−1

2. If � ≤
̄
� then the unique symmetric pure strategy equilibrium is for each �rm to play distribution F ∗, de�ned

as

F ∗ = (
x
n�)

1
n−1

, 0 ≤ x ≤ n�

and

Corollary 1.1 (Corollary 3.2 in Whitmeyer (2018)). Let � >
̄
�. If the number of �rms is increased, the weight

placed on 1 in the symmetric equilibrium must increase. That is, a is strictly increasing in n.
In the limit, as the number of �rms, n, becomes in�nitely large, the weight on 1 converges to �. That is, the

equilibrium distribution converges to a distribution with support on two points, 1 and 0.

We begin with the following lemma
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Lemma 1.1. (Frictionless) There are no symmetric equilibria with point masses on any point in the interval [0, 1).

Proof. First, we establish that there are no symmetric Nash Equilibria where �rms choose discrete distributions
supported on N (< ∞) points.

It is easy to see that there is no symmetric equilibrium in which each �rm chooses a distribution consisting
of a single point mass. Such a distribution could only consist of distribution with weight 1 placed on � and would
yield to each �rm a payo� of 1/n. However, there is a pro�table deviation for a �rm to instead place weight 1− �
on � + � and weight � on 0 (�, � > 0). In doing so, this �rm could achieve a payo� arbitrarily close to 1.

Now, assume ∞ > N ≥ 2. Observe that a strategy consists of a choice of probabilities
{
p1, p2,… , pN

}
,

pi ∈ [0, 1] ∀i, ∑N
i=1 pi = 1 and support a1 < a2 < ⋯ < aN ∈ [0, 1] such that ∑N

i=1 aipi = �.
The expected payo� to each �rm from playing an arbitrary strategy, S1 = S2 = ⋯ = Sn = E, is

ui(Si , S−i) =
N−1

∑
j=0 (

n−1

∑
i=0

(
n − 1
i )

1
m − i

pn−iN−j (

N−j−1

∑
k=1

pk)

i

)

We claim deviating to the following strategy is pro�table: S′1 where a′

N = aN is played with probability pN − �
and a′

j = aj +� is played with probability pj +�j , for j ≠ N , where ∑N−1
j �j = � (Again, �, �, �j > 0 ∀j).1 The expected

payo� to �rm 1 playing strategy S′1 is

u1(S′1, S−1) =
N−1

∑
j=0 (

n−1

∑
i=0

(
n − 1
i )

1
n − i

pn−iN−j (

N−j

∑
k=1

pk)

i

)

− �
n−1

∑
i=0

(
n − 1
i )

1
n − i

pn−i−1N (1 − pN )i

+
N−1

∑
j=1 (

n−1

∑
i=0

(
n − 1
i )

n − i − 1
n − i

pn−iN−j (

N−j

∑
k=1

pk)

i

)

Note that the deviation is pro�table for �rm 1 if

�
n−1

∑
i=0

(
n − 1
i )

1
n − i

pn−i−1N (1 − pN )i <
N−1

∑
j=1 (

n−1

∑
i=0

(
n − 1
i )

n − i − 1
n − i

pn−iN−j (

N−j

∑
k=1

pk)

i

)
,

which holds for a su�ciently small vector (�1, ..., �N−1).
Second, we extend this argument to show that there can be no distributions with point masses on any point

in [0, 1). Using an analogous argument to that used in Lemma 1.1, it is easy to see that there cannot be multiple
point masses. Accordingly, it remains to show that there cannot be a single point mass. We will show that there
cannot be an atom at any point b ∈ (0, 1): suppose for the sake of contradiction that that there is a symmetric
equilibrium where each �rm plays a point mass of size p on point b. That is, each �rm plays strategy S that
consists of a distribution F and a point mass of size p on point b. Let H (x) = F n−1. Then, �rm 1’s payo� is

u1(S1, S−1) = ∫
1

0
∫

y

0
ℎ(x)f (y)dxdy + p

n−1

∑
i=0

(
n − 1
i )(

1
n − i)

F (b)ipn−1−i

1Note that we can always �nd such an � > 0.
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Next, let �rm 1 deviate by introducing a tiny point mass of size � at 0 and moving the other point mass to
b + � and reducing its size slightly to p − � (�, � > 0); call this strategy S ′

1. The payo� to �rm 1 is

u1(S
′

1, S−1) = ∫
1

0
∫

y

0
ℎ(x)f (y)dxdy + (p − �)

n−1

∑
i=0

(
n − 1
i )F (b + �)

ipn−1−i

Suppose that this is not a pro�table deviation. This holds if and only if

p
n−1

∑
i=0

(
n − 1
i )(

1
n − i)

F (b)ipn−1−i ≥ (p − �)
n−1

∑
i=0

(
n − 1
i )F (b + �)

ipn−1−i

or,

�pn−1 + p
n−1

∑
i=1

(
n − 1
i )(

1
n − i)

F (b)ipn−1−i

≥
n − 1
n

pn + (p − �)
n−1

∑
i=1

(
n − 1
i )F (b + �)

ipn−1−i

Clearly, as � and � go to zero we achieve a contradiction. Hence, there is a pro�table deviation and so this
is not an equilibrium. It is clear that there cannot be an equilibrium with a point mass on 0 (since otherwise a
�rm could “move" its mass point slightly higher than zero for a discrete jump in its payo�) and so we omit a
proof. ■

The mechanics behind this result are clear. There can be no mass points on any point other than 1 since
a �rm can always deviate by moving its mass point in�nitesimally higher and achieving a discrete jump in its
payo�. We can quickly gain some intuition for this result by thinking about the symmetric vector of strategies
where each �rm chooses a fully informative signal. Any �rm can deviate pro�tably by instead putting some
� − � (� small) weight on 1 and 1 − � + � weight on some strictly positive point (very) close to 0. Since � is so
small, this deviation will “cost" the deviator next to nothing, but since the probability that all the other �rms all
have a realization of 0 is strictly positive, the deviator will have secured itself a discrete jump up in its payo�.

1.1 Theorem 1.1 Proof
We prove this theorem for the case where � ≥ 1/n. The remaining case, � < 1/n, is proved analogously and the
doubtful/incredulous reader is directed to the working paper Hulko and Whitmeyer (2017), which contains the
detailed proof.

1.1.1 Equilibrium Veri�cation

Proof. First, we show that this is an equilibrium. Accordingly, we need to show that there can be no unilateral
pro�table deviation. De�ne W as maxi≠1 Xi , which, recall, has a point mass on 1. Moreover, de�ne H as the
corresponding continuous portion of the distribution of W ; H ∶= F n−1i :

H (w) = (1 − a)n−1
x
s
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Evidently, it su�ces to show that our candidate strategy achieves a payo� of at least 1/n to the �rm who
uses it, irrespective of the strategy choice by the other �rms. Suppose for the sake of contradiction that there
is a pro�table deviation, that is, �rm 1 deviates pro�tably by playing strategy . Clearly, we can represent  as
having a point mass of size c, 0 ≤ c ≤ � on 1 (naturally, if c = 0, then there is no point mass there). Written out,
 consists of

G(y) for x ∈ [0, 1) ()

and ℙ(Y = 1) = c. De�ne K ∶= ∫ 1
0 dG = 1 − c. Naturally, K ≤ 1. Then, �rm 1’s utility from this deviation,

u1(, S−1), is2

u1 = c
1 − (1 − a)n

na
+ (1 − a)n−1 (K − G(s)) + ∫

s

0
∫

y

0
ℎ(x)g(y)dxdy

=
c
n�

+ (1 − a)n−1 (K − G(s)) + ∫
s

0
∫

y

0
ℎ(x)g(y)dxdy

Evidently, this is a pro�table deviation if and only if u1 > 1/n; that is,

c
n�

+ (1 − a)n−1[K − G(s)] + ∫
s

0

(1 − a)n−1

s
yg(y)dy >

1
n

(1)

Rearranging,

c
n�

+ (1 − a)n−1[K − G(s)] + ∫
s

0

(1 − a)n−1

s
yg(y)dy >

1
n

which simpli�es to

K > ∫
1

s

1
s
yg(y)dy + G(s)

since ∫ 1
0 (1/s)yg(y)dy = � − c and s = n�(1 − a)n−1. It is clear that ∫ 1

s
1
s yg(y)dy ≥ ∫ 1

s g(y)dy and thus we have

K > ∫
1

s

1
s
yg(y)dy + G(s) ≥ ∫

s

0
g(y)dy + ∫

1

s
g(y)dy = K

We have established a contradiction and thus the result is shown.
■

1.1.2 Equilibrium Uniqueness

First,
2Note that the �rst term, c(1 − (1 − a)n)/na, is derived below, in the proof of Lemma 1.2.

4



Online Appendix Persuading a Consumer to Visit

Claim 1.1.

�
n−1

∑
i=0

(
n − 1
i )(

1
n − i)

(1 − a)ian−1−i = �
1 − (1 − a)n

na

Proof. De�ne k ∶= n − 1 − i, and so we have

�
n−1

∑
i=0

(
n − 1
i )(

1
n − i)

(1 − a)ian−1−i = �(1 − a)n−1
n−1

∑
k=0

(
n − 1
k )

1
k + 1 (

a
1 − a)

k

Then, we have the identity.

n

∑
k=0

1
k + 1(

n
k)

wk =
(w + 1)n+1 − 1
(n + 1)w

and so we simply set w ∶= a
1−a , and after some algebra the proof is completed. ■

Then,

Lemma 1.2. Suppose that in a symmetric equilibrium each �rm puts a point mass of size a ≥ 0 on 1. Then, a must
satisfy a ≥ �[1 − (1 − a)n].

Proof. Let each �rm play strategy Si = S where they each put weight a on 1. Suppose that �rm 1 deviates
and plays strategy Ŝ1 consisting of random variable Y distributed with value 1 with probability � and 0 with
probability 1 − �.

Then, �rm 1’s payo� is

u1(Ŝ1, S−1) = �
n−1

∑
i=0

(
n − 1
i )(

1
n − i)

(1 − a)ian−1−i (2)

We use Claim 1.1 and write Equation 2 as

u1(Ŝ1, S−1) = �
1 − (1 − a)n

na
(3)

This must be less than or equal to 1/n, or

a ≥ �[1 − (1 − a)n]

■

There must also be a continuous portion of the distribution on some interval [t, s] with t ≥ 0, s ≤ 1. Accord-
ingly, our candidate equilibrium strategy, i , is of the following form

i =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0 x ∈ [0, t)
Fi x ∈ [t, s)
1 − a x = s

(i)
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with 0 ≤ t < s ≤ 1 and ℙ(X = 1) = a.3 We look for a symmetric equilibrium. Observe that distributions Fi must
be such that

∫
s

t
xfi(x)dx = � − a

Fix Fj for j ≠ i and de�neH as F n−1j . Given this distribution, we have the necessary condition that Fi maximizes

1 − (1 − a)n

n
+ ∫

s

t
fi(x)H (x)dx

Next, we de�ne the functional J [f ]:

J [fi] = ∫
s

t
fi(x)H (x)dx − �0 [∫

s

t
fi(x)dx − (1 − a)] − � [∫

s

t
xfi(x)dx − � + a]

and take the functional derivative:

�J (f (x))
�f (x)

= H (x) − �0 − �x

This must equal 0 at a maximum, so we have

H (x) = �0 + �x

Then, by symmetry, H (⋅) = F n−1i (⋅). Moreover, we have two initial conditions that allow us to obtain t and s.
Using the conditions Fi(t) = 0 and Fi(s) = (1 − a), the equilibrium distribution, Fi , must be

Fi(x) = (1 − a)(
x − t
s − t )

1/(n−1)

Note that we also need ∫ s
t xfi(x)dx = � − a, which reduces to

a =
n� − [s + (n − 1)t]
n − [s + (n − 1)t]

(4)

We �nish my showing that t must be 0 and by pinning down the size of a.

Lemma 1.3. The lower bound of the continuous portion of the distribution, t , must be 0.

Proof. Let �rms 2 through n play Fi supported on [t, s] and have a point mass of size a on 1. Suppose for the
sake of contradiction that t > 0. Recall,

Fi(x) = (1 − a)(
x − t
s − t )

1/(n−1)

Thus, the cdf of the maximum of this, H ∶= F n−1, is

H (x) = (1 − a)n−1 (
x − t
s − t )

3It is clear that the weight on 1, a, cannot be � in the symmetric equilibrium. To see this, note that such a value for a would beget
a distribution with binary support, which we already ruled out in Lemma 1.1.
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Let �rm 1 play some alternate strategy G supported on [0, s] such that the density is positive on some portion
of [0, t] and have a point mass of size a on 1. Then, �rm 1’s expected payo� is:

u =
1 − (1 − a)n

n
+ ∫

s

t
∫

y

t
ℎ(x)g(y)dxdy

=
1 − (1 − a)n

n
+ ∫

s

t
(1 − a)n−1 (

y
s − t)

g(y)dy − ∫
s

t
(1 − a)n−1 (

t
s − t)

g(y)dy

=
1
n
+ ∫

t

0
(1 − a)n−1 (

t − y
s − t )

g(y)dy >
1
n

where we used,

1 − (1 − a)n

n
+ ∫

s

0
(1 − a)n−1 (

y
s − t)

g(y)dy − ∫
s

0
(1 − a)n−1 (

t
s − t)

g(y)dy

=
1 − (1 − a)n

n
+ (1 − a)n−1 (

� − a
s − t )

− (1 − a)n (
t

s − t)

Thus, there is a pro�table deviation and so t must equal 0. ■

Lemma 1.4. The weight on 1, a, is given by a = � − �(1 − a)n.

Proof. Recall that in Lemma 1.2 we show that a ≥ � − �(1 − a)n. Thus, it is su�cient to show here that a ≤
� − �(1 − a)n.

We divide the following into two cases. In the �rst case, suppose that � ≤ s. Note that it cannot be a pro�table
deviation for a �rm to play a strategy consisting of s played with probability �/s and 0 with probability 1 − �/s.
This condition is equivalent to Inequality 5:

1
n
≥
(1 − a)n−1�

s
(5)

Or,

s ≥ n(1 − a)n−1� (6)

From Equation 4, and using the fact that t = 0, we have

s =
n(� − a)
(1 − a)

(7)

We substitute this into inequality 6 and obtain

n(� − a)
(1 − a)

≥ n(1 − a)n−1�

� − �(1 − a)n ≥ a
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For the second case, suppose now that � > s. By similar logic to the above, it cannot be a pro�table deviation
for a �rm to play a strategy consisting of s played with probability (1−�)/(1−s) and 1with probability (�−s)/(1−s).
That is,

1
n
≥ (

1 − �
1 − s )

(1 − a)n−1 + (
� − s
1 − s)(

1 − (1 − a)n

na ) (8)

Suppose for the sake of contradiction that a > �−�(1−a)n. Additionally, for convenience, de�ne k ∶= (1−a)n.
Inequality 8 can be rearranged to obtain:

s (1 − k − a) ≥ an(1 − �)
k

(1 − a)
+ �(1 − k) − a

We substitute in Equation 7 and rearrange to obtain:

n(� − a) (1 − k − a) ≥ ank(1 − �) + �(1 − k)(1 − a) − a(1 − a)
� (n + a − an − 1) − (1 − a)a(n − 1) ≥ �k ((n − 1)(1 − a))

(9)

Our assumption above that a > � − �(1 − a)n is equivalent to �k > � − a. We substitute this into Inequality 9 and
cancel:

� (n + a − an − 1) − (1 − a)a(n − 1) > (� − a) ((n − 1)(1 − a))
0 > 0

We have achieved a contradiction and have thereby shown that a ≥ �−�(1−a)n. This, combined with Lemma
1.2 allows us to conclude the result, that a = � − �(1 − a)n.

■

1.2 Corollary 1.1 Proof
Proof. For convenience, de�ne b = 1 − a, and recall (see Theorem 1.1) that we have

� =
1 − b
1 − bn

De�ne the right hand side of this expression as '. For b ∈ [0, 1], ' is decreasing in b and therefore increasing
in a over the same interval. Moreover,

)'
)n

=
(1 − b)bn ln(b)

(bn − 1)2
< 0

Thus, as n increases, the a needed to satisfy the above expression must increase. That is, more and more
weight is put on 1. Concurrently, s, or the upper bound of the continuous portion of the distribution is shrinking,
since, (as shown in the proof of Theorem 1.1)

s =
n(� − a)
1 − a

8



Online Appendix Persuading a Consumer to Visit

and thus
)s
)a

=
−n(1 − �)
(1 − a)2

Furthermore, as n goes to in�nity, we see that a goes to �.
■
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