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1 Introduction

A little learning is a dangerous thing.

Alexander Pope

An Essay on Criticism

This is a paper on the value of information. The setting is a two player sender-receiver,

signaling, or communication, game. There is an unknown state of the world, about which the

receiver is uninformed. The receiver is faced with a decision problem but has no direct access

to information about the state. Instead, there is an informed sender, who, after learning the

state, chooses a (possibly costly) action (message)1, which the receiver observes.

We make a minimal number of assumptions. Each player has a von Neumann-Morgenstern

utility function that may depend on the message chosen by the sender, the state of the world,

and the action chosen by the receiver. Thus, these games include cheap talk games as in

Crawford and Sobel (1982) [8], and signaling games as in Spence (1978) [27] or Cho and

Kreps (1986) [7]. Throughout we assume that the number of states, messages, and actions

are �nite.

In this setting, we pose a simple question. Is the receiver’s maximal equilibrium payo�

convex in the prior? That is, restricting attention to the equilibrium that maximizes the

receiver’s expected payo�, does ex ante learning always bene�t the receiver? If not, then are

there conditions that guarantee this convexity?

We show that the answer to the �rst question is no: the receiver’s maximal equilibrium

payo� is not generally convex in the prior. However, there are broad conditions that guar-

antee convexity. If the game is simple–the sender’s message has only instrumental value to

the receiver–then the receiver’s payo� is convex in the prior provided either

1. There are at most two states; or

2. The receiver has at most two actions, and
1Throughout, in order to distinguish the sender’s action from the receiver’s action, the sender’s action is

termed a message. In some settings, like cheap talk games, this moniker is literal. In some settings, like e.g.

the classic Spence scenario, in which the sender chooses a level of education, message is less �tting as a label.

Hence, the reader should keep in mind that the message is simply the receiver’s action.
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i. The game is cheap talk; or

ii. There are at most two messages; or

iii. There are at most three states.

If there are three or more messages, four or more states, and the game is not cheap talk, then

even if the game is simple and the receiver has just two actions, the receiver’s payo� may

fail to be convex in the prior. Moreover, if there are three or more states and the receiver

has three or more actions, then the receiver’s payo� may fail to be convex in the prior, even

if the game is simple and cheap talk with transparent motives (a cheap talk game in which

each sender has identical preferences over the action chosen by the receiver). Furthermore,

if the game is non-simple then the receiver’s payo� may fail to be convex in the prior, even

if there are just two states and two actions.

Why is the receiver’s payo� convex in those scenarios described above? Why may the

payo� fail to be convex otherwise? There is a crucial trade-o� that belongs to ex ante in-

formation acquisition: there is an initial gain in information that, all else equal, bene�ts the

receiver. However, all else may not be equal: the initial learning may result in a belief at

which the receiver-optimal equilibrium may be quite bad for the receiver. Hence, the two

e�ects may have opposite e�ects on the receiver’s welfare, in which case the magnitude of

each e�ect determines whether learning is bene�cial.

The conditions described above guarantee that the �rst e�ect dominates–even if the re-

sulting beliefs after learning lead to worse equilibria for the receiver, her welfare loss is

guaranteed to be less than the welfare gain from the information acquisition itself. If the con-

ditions do not hold, then the �rst e�ect may not dominate. Even though the receiver gains

information initially, the resulting equilibria may be so bad that the receiver may strictly

prefer not to learn.

Thanks to the ubiquity of communication games, there are numerous interpretations of ex

ante information acquisition. In the Spence (1978) [27] setting, this paper’s question becomes,

“when does any test (prior to the sender’s education choice) bene�t the hiring �rm(s)?” A

seminal paper in �nance is Leland and Pyle (1977) [18], who explore an entrepreneur signal-

ing through his equity retainment decision. There, “when does any background information
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or access to the entrepreneur’s history bene�t a prospective investor?” In a political econ-

omy setting in which an incumbent signals through his policy choice (see e.g. Angeletos,

Hellwig, and Pavan 2006, and Caselli, Cunningham, Morelli, and de Barreda 2014) [1, 6], we

ask, “when does any initial news article bene�t a representative member of the populace?”

More applications of ex ante information acquisition include reports about the state of

the economy, in the case of a central bank signaling through its monetary policy (Melosi

2016) [20]; product reviews, in the case of a �rm signaling through advertising (Nelson 1974,

and Milgrom and Roberts 1986) [23, 22], or through its warranty o�er (Gal-Or 1989) [9];

and �nancial reports or audits, in the case of a �rm signaling through dividend provision

(Bhattacharyya 1980) [3].

The remainder of Section 1 discusses related work, and Section 2 describes the formal

model. Sections 3 and 4 contain the main results of the paper, Theorems 3.1 and 4.1, which

provide su�cient conditions for convexity and show that the receiver’s payo� may not be

convex should those conditions not hold, respectively. Section 5 concludes.

1.1 Related Work

One way to rephrase this paper’s research question is, “if information is free prior to a com-

munication game, then does it bene�t the receiver in expectation to acquire it?" Ramsey

(1990) [26] asks this question in the context of a decision problem and answers in the a�r-

mative, and this result also follows from Blackwell (1951, 1953) [4, 5] among many others.

There are a number of papers that investigate the value of information in strategic in-

teractions (games). Neyman (1991) [24] shows that information can only help a player in a

game if other players are unaware that she has it. Kamien, Tauman, and Zamir (1990) [13]

explore an environment in which an outside agent, “the Maven”, possesses information rel-

evant to an n-player game in which he is not a participant. There they look at the outcomes

that the maven can induce in the game and how (and for how much) the maven should sell

the information. Bassan, Gossner, Scarsini, and Zamir (2003) [2] establish necessary and suf-

�cient conditions for the value of information to be socially positive in a class of games with

incomplete information.
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In two-player (simultaneous-move) Bayesian games, Lehrer, Rosenberg, and Shmaya (2013)

[17] forward a notion of equivalence of information structures as those that induce the

same distributions over outcomes. They characterize this equivalence for several solution

concepts, including Nash equilibrium. In a companion paper, they (Lehrer, Rosenberg, and

Shmaya 2010) [16] look at the same set of solution concepts in (two-player) common interest

games and characterize which information structures lead to higher (maximal) equilibrium

payo�s. Gossner (2000) [10] compares information structures through their ability to induce

correlated equilibrium distributions, and Gossner (2010) [11] introduces a relationship be-

tween “ability” and knowledge: not only does more information imply a broader strategy

set, but a converse result holds as well.

Ui and Yoshizawa (2015) [28] explore the value of information in (symmetric) linear-

quadratic-Gaussian games and provide necessary and su�cient conditions for (public or pri-

vate) information to increase welfare. Kloosterman (2015) [14] explores (dynamic) Markov

games and provides su�cient conditions for the set of strongly symmetric subgame perfect

equilibrium payo�s of a Markov game to decrease in size (for any discount factor) as the in-

formativeness of a public signal about the next period’s game increases. Gossner and Mertens

(2001) [12], Lehrer and Rosenberg (2006) [15], Pęski (2008) [25], and De Meyer, Lehrer, and

Rosenberg (2010) [21] all study the value of information in zero-sum games.

In a sense, this paper explores the decision problem faced by the receiver in which the

information she obtains is endogenously generated by equilibrium play by the sender. That

is, the receiver’s problem is one in which ex ante information acquisition results in a (possi-

bly) di�erent information generation process at the resulting posterior belief. Outside of that

there are no strategic concerns; and the sender is perfectly informed, so there is no learning

on his part. Consequently, this paper is more similar in spirit to the original question asked

by Ramsey, and we need not concern ourselves with the possible complexity of information

structures for multiplayer games of incomplete information.

Furthermore, this paper investigates the value of information in communication games,

which are by de�nition games of information transmission. In contrast to the broad class

of games of incomplete information, in communication games the transfer of information

between sender and receiver is of paramount importance. The main results of this paper
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pertain to a restriction of that class of games–simple games–in which the sender’s message

a�ects the receiver’s payo� only through the information that it contains.

The paper closest to this one is its companion paper, Whitmeyer (2019) [29], which in-

vestigates how a receiver can design an information structure in order to optimally elicit

information from a sender in a communication game. Namely, in a two player communica-

tion game, we allow the receiver to commit ex ante to a signal � ∶ M → Δ(X ), where X is a

(compact) set of signal realizations. Instead of observing the sender’s message, the receiver

observes a signal realization correlated with the message. In one of the main results of that

paper, we discover that in simple two-action games, this ability guarantees that the value of

information is always positive. Contrast this to the negative result that we �nd in this paper–

that in simple two-action games the value of information is not generally positive–the other

paper turns this on its head and shows that information design guarantees a positive value

of information.

2 The Model

There are two players: an informed sender, S; and a receiver, R, who share a common prior

over the state of the world, �0 ∈ Δ(Θ), where �0(�) = Pr(Θ = �). There are two stages to the

scenario–�rst, there is a learning stage.

Stage 1 (Learning Stage): There is some �nite (or at least compact) set of signal realiza-

tions Y and a signal or Blackwell experiment, mapping � ∶ Θ → Δ(Y ) whose realization is

public. This experiment leads to a distribution over posteriors, where the posterior follow-

ing signal realization y is �y . Call � the Initial Experiment. Each signal realization begets

(via Bayes’ law) a posterior distribution, �y . Thus, experiment � leads to a distribution over

posterior distributions, P ∈ ΔΔ (Θ), whose average is the prior distribution:

EP [�] ≡ ∫
Δ(Θ)

�dP (�) = �0

Each posterior is the prior for the ensuing communication game. That is, following each

realization of the experiment, the sender and receiver then take part in a second stage, the

communication game.
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Stage 2 (Communication Game): In this stage, S and R share the common prior �y .

The sender has private information, his type (or the state of the world), � ∈ Θ: he observes

his type before choosing a message, m, from a set of messages M . The receiver observes m,

but not � , updates her belief about the receiver’s type and message using Bayes’ law, then

chooses a mixture over actions, A. We assume that these sets, M,A and Θ, are �nite.

Each player, S and R, has preferences over the message sent, the action taken, and the

type of the sender. These are represented by the continuous utility functions ui , i ∈ {S, R}:

ui ∶ M × A × Θ→ ℜ.

Let us revisit the timing. First, there is an initial experiment which begets a distribution

over (common) posterior beliefs, which are each respectively (common) prior beliefs in the

ensuing communication game. Second, S observes his private type � ∈ Θ, and chooses a

message m ∈ M to send to R. R observes m, updates his belief, and chooses action a ∈ A.

We extend the utility functions for the players to behavioral strategies. A behavioral

strategy for S, �� (m) is a probability distribution over M ; it is the probability that a type

� sender sends message m. Similarly, a behavioral strategy for R, �(a|m) is a probability

distribution over A; it is the probability that the receiver chooses action a following message

m.

We focus on receiver-optimal Perfect Bayesian Equilibrium (PBE), which we de�ne in the

standard manner. Henceforth by equilibrium or PBE, we refer to those particular equilibria,

and by receiver’s payo� we mean the receiver’s payo� in the receiver-optimal PBE.

Throughout, we consider various sub-classes of communication games. These sub-classes

are de�ned as follows

De�nition 2.1. We say a communication game is Simple if the receiver has preferences over

the action taken, A, and the type of the sender, Θ, but not over the message chosen by the

sender,M . Equivalently, a game is simple provided the receiver’s preferences are represented

by the continuous utility function uR ∶ A × Θ→ ℜ.

On occasion, we derive results that hold for two other classes of communication games;

cheap talk, and cheap talk with transparent motives. We remind the reader of their de�ni-

tions:
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De�nition 2.2. We say a communication game is Cheap Talk if the sender has preferences

over the action taken by the receiver, A, and the type of the sender, Θ, but not over the mes-

sage he chooses, M . Namely, for each type, each message is equally costless. Equivalently,

a game is cheap talk provided the sender’s preferences are represented by the continuous

utility function uS ∶ A × Θ→ ℜ.

A subclass of the class of cheap talk games are those with transparent motives, which

term was introduced in Lipnowski and Ravid (2017) [19]:

De�nition 2.3. We say a communication game is Cheap Talk with Transparent Motives

if the game is a cheap talk game in which the sender’s preferences over the action taken

by the receiver, A, are independent of his type, Θ. Equivalently, a game is cheap talk with

transparent motives provided the sender’s preferences are represented by the continuous

utility function uS ∶ A→ ℜ.

3 When the Value of Information is Always Positive

This section is devoted to establishing the following theorem, which provides su�cient con-

ditions for the value of information to always be positive in communication games.

Theorem 3.1. In simple communication games, the value of information is always positive for

the receiver provided

1. There are two states (or fewer); or

2. The receiver has two actions (or fewer); and

i. There are three states (or fewer); or

ii. There are two messages (or fewer); or

iii. The game is cheap talk.

To begin, we show that if there are two states of the world (or two types of sender), the

receiver’s payo� is convex in the prior. Observe that if there is no initial experiment, and
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the sender and receiver participate in the signaling game with common prior �0, then there

exists a signal or experiment � ∶ Θ→ Δ(M) that is induced by the optimal equilibrium. This

experiment leads to a distribution over posteriors, where the posterior following message m

is �m. Call this experiment the Null-Optimal Experiment.

Lemma 3.2. In any simple communication game with two states and n actions, the receiver’s

payo� is convex in the prior.

Proof. We sketch the proof here and leave the details to Appendix A.1. The �rst step is to

establish Claim A.1, which allows us to restrict the number of messages in the game to two

without loss of generality. As a result, there are just three cases that we need to consider:

�rst, where the sender types pool in the receiver-optimal equilibrium at belief �0; second,

where one sender type mixes and the other chooses a pure strategy (in the receiver-optimal

equilibrium at belief �0); and third, where both sender types mix. Note that this lemma holds

trivially if there exists a separating equilibrium, so we need not consider that case.

Next, following any realization of the initial experiment, y , there exists a receiver-optimal

equilibrium. Equivalently, there exists a signal or experiment y ∶ Θ→ Δ(M) that is induced

by the optimal equilibrium. This experiment leads to a distribution over posteriors, where

the posterior following message m is �m. Call this experiment the y-equilibrium experiment.

Then, we de�ne � as the experiment that corresponds to the information ultimately ac-

quired by the receiver following the initial learning and the resulting equilibrium play in the

signaling game. All that remains is to show in each of the three cases that the null-optimal

experiment, �, is less Blackwell informative than � and so the receiver prefers �–the receiver

prefers any learning.

Note that it is possible to “prove this result without words", which proof is depicted in

Figure 1. In each case, the red point corresponds to the prior, the blue arrows and points

to the initial experiment and posteriors, the yellow arrows and points to the null-optimal

experiment, the green arrows to the y-equilibrium experiments, and the purple arrows and

points to experiment � .

■

Next, we explore convexity when the receiver has only two actions. First, we establish
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Figure 1: Lemma 3.2 Proof
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that it is without loss of generality to restrict attention to equilibria in which no type mixes

over messages at which the receiver strictly prefers di�erent actions.

Lemma 3.3. In simple games, there exists a receiver-optimal equilibrium in which no type of

sender mixes over messages that induce beliefs at which the receiver strictly prefers di�erent

actions.

Proof. The proof is left to Appendix A.2 ■

Second, we discover that if there is a receiver optimal equilibrium at belief �0 in which at

most two messages are used, then any information bene�ts the receiver. Formally,

Lemma 3.4. Consider any simple communication game. If there is a receiver-optimal equilib-

rium at belief �0 in which at most two messages are used, then any initial experiment bene�ts

the receiver.

Proof. The full proof is left to Appendix A.3. ■

Because of the costless nature of messages in cheap talk games, in conjunction with

Lemma 3.3, it is clear that there must be a receiver-optimal equilibrium at belief �0 in which

at most two messages are used. Accordingly, Lemma 3.4 implies

Corollary 3.5. In any n state, two action, simple cheap talk game, the receiver’s payo� is convex

in the prior.

From Lemma 3.2 we know that in two state, two action simple communication games,

the value of information is always positive for the receiver. Perhaps surprisingly, the value

of information is also always positive for the receiver in three state, two action simple com-

munication games. Viz,

Lemma 3.6. In simple communication games, for three states and two actions, the receiver’s

payo� is convex in the prior.

Proof. Again, we leave the detailed proof to Appendix A.4 but provide a sketch here. From

Lemma 3.3, we may conclude that at most three messages will be used in the receiver-optimal
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equilibrium at �0. If two messages or fewer are used, then from Lemma 3.4, we have convex-

ity. Thus, it remains to consider the case in which three messages are used. Fortunately, we

show that there is just one such equilibrium that we need to consider.

Like Lemma 3.2, it is also possible to prove Lemma 3.6 without words, which proof is

depicted in Figure 2. The red point corresponds to the prior, the blue arrows and points

to the initial experiment and posteriors, the yellow arrows and points to the null-optimal

experiment, the green arrows to the y-equilibrium experiments (or rather experiments that

are payo�-equivalent to the y-equilibrium experiments), and the purple arrows and points

to experiment � .

■

4 When the Value of Information is not Always Positive

This section tempers the optimism inspired by the Section 3. Namely, we establish Theorem

4.1, which states that if none of the su�cient conditions from Theorem 3.1 hold in some

communication game, then there may be information that hurts the receiver

Theorem 4.1. In the following communication games, ex ante information may hurt the re-

ceiver:

1. Simple games with four or more states, three or more messages, and two actions;

2. Simple games with three or more states and actions, and two or more messages;

3. Non-simple games with two or more states, actions, and messages.

We begin by proving Lemma 4.2, the �rst result listed in Theorem 4.1.

Lemma 4.2. In simple communication games, for four or more states, three or more messages,

and two actions, the receiver’s payo� is not generally convex in the prior.

Proof. Proof is via counter-example. There are four states, Θ = {�1, �2, �3, �4}, and a belief is

a quadruple (�1, �2, �3, �4), where �i ∶= Pr (Θ = �i) for all i = 1, 2, 3, 4 and �1 + �2 + �3 + �4 = 1.
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Figure 2: Lemma 3.6 Proof
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Figure 3: Lemma 4.2 Game
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The belief can be fully described with just three variables; hence, depicting the receiver’s

payo� as a function of the belief requires four dimensions. This is (rather) di�cult to do,

so instead we will restrict attention to a family of experiments that involve learning on just

one dimension. That is, we �x �1 = 1/3 and �3 = 1/8, and consider only the receiver’s payo�

as a function of her (prior) belief about states �2 and �4. Learning is on just one dimension,

and so (abusing notation) we rewrite the receiver’s belief �2 as � and �4 as 13/24 − �, where

� ∈ [0, 13/24].

In states �1 and �2, action a2 is the correct action for the receiver; and in states �3 and �4,

action a1 is correct:

Action �1 �2 �3 �4

a1 0 0 1 2

a2 1 1 0 0

Likewise, the sender’s state (type)-dependent payo�s from message, action pairs are

given as follows:

type �1 �2 �3 �4

message m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3

a1 1 0 0 0 1 0 0 1 3 −1 2 −2

a2 1 0 0 0 1 0 2 4 0 5/4 0 −1

Note that types �1 and �2 have messages that are strictly dominant (m1 and m2, respec-

tively), and that �4 has a message that is strictly dominated (m3).

Figure 4 depicts the receiver’s equilibrium payo� as a function of �, V T .2 Explicitly, that

function is

V
T
(�) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

37

24
− 2� � ≤

13

36

1

3
+ �

13

36
< � ≤

13

24

2The super-script T refers to “transparency.” This notation is due to the fact that in Whitmeyer (2019) [29]

we explore the value of information in the case when the receiver can choose the information structure in the

ensuing game. There, we contrast the value of information in that “optimal transparency" setting to the setting

with full transparency, the focus of this paper.
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Figure 4: Receiver Payo�s (Lemma 4.2 Proof)
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and its derivation is left to Appendix A.5. The receiver’s payo� is no longer convex in the

belief–in fact, it is no longer lower semicontinuous. If � > 13/36–the receiver becomes too

sure that the sender is not type �3 or �4–the only equilibria beget the pooling payo�, which

correspond to no (or at least no useful) information transmission. The dotted line is a secant

line that corresponds to a binary initial experiment that strictly hurts the receiver. ■

With three or more states and actions, information may harm the receiver:

Lemma 4.3. If there are at least three states, three actions and two messages then the receiver’s

payo� is not generally convex in the prior.

Proof. Proof is via counterexample. Consider the game depicted in Figure 5. There are three

types �L, �M , and �H . Write a belief as a triple (�L, �M , �H ). Note that the game is cheap talk

with transparent motives: each type gets utility 1 if the receiver chooses l or s, and 0 if the

receiver chooses x . The receiver’s preferences are given as follows:

Action �L �M �H

l 0 1 2

s 13/24 13/24 1

x 1 0 1

Consider the following three beliefs

�0 ∶= (

1

4

,

1

4

,

1

2
)
, �1 ∶= (

1

12

,

1

4

,

2

3
)
, and �2 ∶= (

5

12

,

1

4

,

1

3
)

and note that �0 is a convex combination of �1 and �2, each with weight 1/2. That is, for some

prior �0, �1 and �2 are the realizations of a binary initial experiment, � .

We depict the three prior distributions in the (x, y)-coordinate plane, where the x-axis

corresponds to �H , and the y-axis corresponds to �M . There exist three convex regions of

beliefs, l, s, and x , in which actions l, s, and x , respectively, are optimal. These regions and

the three beliefs, �0, �1, and �2, are illustrated in Figure 6.

After some e�ort (relegated to Appendix A.6), we conclude that at beliefs �0 and �1 the

receiver-optimal equilibrium is one in which �H and �L choose di�erent messages, say g and
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Figure 5: Lemma 4.3 Game
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Figure 6: Lemma 4.3 Action Regions
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b, respectively; and �M mixes between those messages (g and b). The receiver’s payo�s at

these beliefs are 67/52 and 83/52, respectively.

In contrast, at belief �2, such an equilibrium does not exist. Instead, the receiver-optimal

equilibrium sees �H and �M choose di�erent messages, say g and m, respectively; and �L mix

between those messages (g and m). The receiver’s payo� is 127/132.

The posteriors corresponding to the y-equilibrium experiment for each of the three beliefs

are depicted in Figure 7, where each x denotes a posterior distribution.

Finally, we can directly calculate and compare the receiver’s expected payo� from this

information acquisition to her payo� without obtaining the information:

67

52

>

2195

1716

=

1

2

⋅

83

52

+

1

2

⋅

127

132

whence we conclude that the receiver’s optimal equilibrium payo� is not convex in the prior.

Note that this game is a cheap talk game with transparent motives–even these restrictions

are not enough to guarantee convexity. ■

An analog to Figure 1 is depicted in Figure 8. There, the red point corresponds to the prior

�0, the blue arrows and points to the initial experiment and posteriors, the yellow arrows and

points to the null-optimal experiment, the green arrows to the y-equilibrium experiments,

and the purple arrows and points to experiment � .

What goes wrong when there are three or more states and actions? Recall the two state

case. In such a setting, because there are only two states, the actors’ beliefs are one dimen-

sional. As a result, any additional information can only shift the belief to the left or right on

the one-dimensional simplex of beliefs. Moreover, because of the of lack of diversity of sender

types, the set of possible equilibrium vectors of strategies is quite small (qualitatively)–they

either pool, separate, both mix, or only one mixes. Consequently, a change in the prior can-

not have too great of an e�ect on the resulting equilibrium distribution of posteriors: as long

as the change is in the correct direction (and remember, there are only two possible direc-

tions) and/or is su�ciently small, the receiver-optimal equilibrium from the original prior

remains feasible, and hence the same vector of posteriors can be generated at equilibrium

(albeit with di�erent probabilities).
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Figure 7: Lemma 4.3 Optimal Posteriors
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Figure 8: Lemma 4.3 Induced Experiments
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Furthermore, any change in the prior that eliminates the receiver-optimal equilibrium

from the original prior must be large, so large that the resulting belief is more extreme than

any posterior generated by the original equilibrium. Thus, the beliefs that correspond to

� must be the same, or more extreme than the beliefs from �, and hence learning must be

bene�cial. Put another way, there is a trade-o� to initial learning–the gain in information

from the initial experiment versus the (possibly decreased) gain in information from the

receiver-optimal equilibria at the new priors. With two states, the �rst e�ect dominates, and

makes up for the fact that the gain in information from the equilibria may be diminished.

With more than two states, this is no longer true. As in the two state case, initial learning

can result in priors for the communication game for which the receiver-optimal equilibrium

under the original prior is no longer feasible. However, due to the fact that the belief space

is now multi-dimensional, the beliefs generated by the receiver-optimal equilibrium at these

new priors, while more extreme in some direction, do not correspond in general to a more

informative experiment. Hence, � and � may not be Blackwell comparable, in which case

comparisons of the receiver welfare between the no learning and learning scenarios must

rely on the speci�c details of the initial experiment and payo�s of the game. As in the two

state case, there is the same trade-o� to initial learning, but now the initial gain may not

dominate.

In the counterexample constructed in Lemma 4.3, the proposed initial experiment is

harmful, since it involves too much learning about whether the state is �L. In particular,

for belief �2, the receiver is too con�dent that the state is �L, which precludes the existence

of an equilibrium in which the receiver can distinguish between the high type and the low

type. Instead, the receiver-optimal equilibrium is one in which she can distinguish between

the high type and the medium type, which is much less helpful for the receiver.

As discussed in Whitmeyer (2019) [29], the value of information may not be positive

in this game even when the receiver can choose the optimal information structure in the

signaling game. As we discover in Whitmeyer (2019), the equilibria described above at beliefs

�0, �1, �2, yield the maximum payo�s to the receiver of any equilibrium under any information

structure.

Finally, if there are only two states and actions, the receiver’s payo� may fail to be convex
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Figure 9: Lemma 4.4 Game

in the prior if the game is not simple. To wit,

Lemma 4.4. If the communication game is not simple, then the receiver’s payo� is not generally

convex in the prior.

Proof. Proof is via counter example. Consider the modi�ed Beer-Quiche game (cf. Cho and

Kreps (1987) [7]) depicted in Figure 9, in which the receiver now obtains an additional payo�

of 1 if the sender chooses Quiche and the receiver chooses the “correct" action (i.e. F if the

sender is �W and NF if the sender is �S).

Observe that if � ≥ 1/2, the receiver optimal equilibrium is one in which the senders pool

onQ. The receiver’s best response is NF and his expected payo� is 2�. If � < 1/2, the receiver

optimal equilibrium is one in which �W mixes, choosing B with probability � = �/(1 − �), and

�S chooses B. The receiver’s expected payo� for � < 1/2 is thus Pr(B)/2 + 2 Pr(Q) = 2 − 3�.

Hence,

V
T
(�) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

2 − 3�, � <
1

2

2�, � ≥
1

2

Figure 10 depicts V T . The receiver’s payo� is neither convex nor lower semicontinuous.

The dotted line in the �gure is a secant line that corresponds to a binary initial experiment

that strictly hurts the receiver.

■
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Figure 10: Receiver Payo�s (Lemma 4.4 Proof)
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5 Conclusion

This paper comprehensive answers the question of when information always bene�ts the

receiver in two player communication games. As Theorem 4.1 illustrates, Theorem 3.1 is

as strong as possible–should none of its conditions hold, the value of information may be

strictly negative.

Naturally, there is room for more work on related questions. What can we say, for in-

stance, about the value of information for the sender? Answering such a question would

pose a challenge since the proof techniques used in this paper would no longer work. Here

we were able to bypass the details of the sender’s incentives and work with distributions of

beliefs. This allowed us to tackle the problem as a decision problem for the receiver, in which

we applied Blackwell’s theorem. Such an approach would not work when exploring sender

welfare because he is not a decision maker.
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A Proofs

A.1 Lemma 3.2 Proof

Proof. If there exists a separating equilibrium in the game then the result is trivial; henceforth

we consider only simple signaling games that do not admit separating equilibria. Since there

are just two states of the world,Θ ∶= {�L, �H}, any belief (probability distribution over states)

can be completely characterized by the parameter � ∶= Pr(Θ = �H ). The interval of beliefs

can be partitioned into �nitely many partitions with boundaries 0 < �1 < �2 < ⋯ < �k < 1. If

an action is optimal for a receiver given some belief, �, then it is either optimal only at that

belief or it is optimal for a closed interval of beliefs [�i , �j] of which � is a member.

We �rst show that it is without loss of generality to restrict the sender to two messages.

Claim A.1. For any equilibrium that yields the receiver a payo� of v in whichm > 2messages

are used, there exists an equilibrium in which at most 2messages are used that yields the receiver

a payo� that is weakly higher than v.

Proof. Suppose that l > 2 messages are used. Since there exist no separating equilibria, there

are only two feasible l-message equilibria: i. Both types choose a mixed strategy with full

support, or ii. One type (say �H ) chooses a mixed strategy with full support, and the other

type chooses a mixed strategy with support on all but one message.

In both cases, there will be l resulting equilibrium beliefs �′
1
< �

′

2
< ⋯ < �

′

l
, where in case

ii. �′
l
= 1. However since each type is mixing, they must be indi�erent over each message

in the support of their mixed strategy. Hence, there must also be an equilibrium in both

cases in which only two messages are used, which induce beliefs �′
1

and �
′

l
. Indeed such

an equilibrium can be constructed by taking each on-path message mi with the associated

induced belief �′
i

with i ≠ 1, l and moving weight from each player’s mixed strategy on mi to

message ml at the ratio

Δ (�H (mi))

Δ (�L(mi))

=

Δ (�H (ml))

Δ (�L(ml))

=

(1 − �0)�
′

l

(1 − �
′

l
)�0

Such a process decreases �′
i

and by construction maintains �′
l
. This can be done until �′

i
= �

′

1

for each i.
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The Blackwell experiment that corresponds to this new, binary, distribution of posteriors

is more informative than in the original situation, where l messages were used. Hence, the

receiver’s payo� must be weakly higher in the two-message equilibrium. ■

Thus, suppose that there are just two messages in the game. There are three cases to

consider.

Case 1: For prior �0, the receiver-optimal equilibrium is one in which both types pool.

Observe that in this case, the null-optimal experiment is a completely uninformative exper-

iment.

Consider any initial experiment � with k ≥ 2 realizations. Following this experiment,

there are k posteriors, �y , y ∈ {1,… , k}; or equivalently there are k priors in the resulting

signaling game.

For each realization of the initial experiment, y , the receiver’s equilibrium payo� in the

resulting signaling game is clearly bounded below by the payo� from a pooling equilibrium,

since that corresponds to the least informative (in the Blackwell sense) y-equilibrium exper-

iment. Hence, suppose that in each of the k signaling games, there is a pooling equilibrium,

and that is the receiver-optimal equilibrium.

Finally, de�ne � as the experiment that corresponds to the information ultimately ac-

quired by the receiver following the initial learning and the resulting equilibrium play in the

signaling game. The null-optimal experiment, �, is less Blackwell informative than � and so

the receiver prefers �–the receiver prefers any learning.

Case 2: For prior �0, the receiver optimal equilibrium is one in which one type mixes and

the other type chooses a pure strategy. Observe that in this case, the null-optimal experiment

begets two posteriors: one that is in the interior on [0, 1] and the other that is either 0 or 1.

Without loss of generality (the other cases follow analogously) suppose that �H mixes and

chooses messagem1 with probability � and �L chooses messagem1. Following an observation

of message m2, the receiver’s belief is 1 and following message m1 it is �j < �0. Moreover,

using Bayes’ law we obtain

� =

(1 − �0)�j

(1 − �j)�0

Consider any initial experiment, � , with k ≥ 2 realizations. Observe that for any realiza-
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tion that yields a belief �i ≥ �j , an equilibrium in which �H mixes and �L does not must also

exist, and hence the receiver’s equilibrium payo�s for each of these beliefs must be bounded

below by the payo� for that equilibrium. As in case 1, suppose that in each case that this

equilibrium is optimal (and hence that the receiver’s payo�s are at their lower bounds).

For each y such that �y ≥ �j , the y-equilibrium experiment is one that sends the poste-

riors to �j and 1. Consequently, it is without loss of generality to suppose that � just has a

single experiment realization that yields a belief above �j . Moreover, as in the �rst case, any

realization of experiment � that yields a posterior �y < �j must beget an equilibrium payo�

bounded below by the pooling payo�. Hence, we suppose that for each such realization y ,

the optimal equilibrium is the pooling equilibrium. Moreover, the resulting payo� from this

distribution over pooling payo�s itself is bounded below by the payo� were the initial ex-

periment to have merely a single signal y that begets a belief below �j . Hence we suppose

that is the case.

To summarize, � has just two signal realizations, y1 and y2, corresponding to beliefs �1 < �j
and �2 > �j , respectively. 1 has just one signal realization, corresponding to belief �1. 2
has two signal realizations, corresponding to beliefs �j and 1. Hence, � has three signal

realizations, corresponding to beliefs �1, �j and 1. The null-optimal experiment � has two

signal realizations, corresponding to beliefs �j and 1.

The resulting distribution over posteriors induced by � has support on 1 and �j . Likewise,

the resulting distribution over posteriors induced by � has support on 1, �j and �1. Since

�1 < �j , � is more Blackwell informative than � and so the receiver prefers �–the receiver

prefers learning.

Case 3: For prior �0, the receiver optimal equilibrium is one in which both types mix.

Observe that in this case, the null-optimal experiment begets two posteriors, both of which

are in the interior of [0, 1].

Let the high type choose a mixed strategy �H and let the low type choose a mixed strategy

�L. The receiver will have two posteriors, �j > �0 > �l and using Bayes’ law, we have

�H =

�j (�0 − �l)

�0 (�j − �l)

, and �L =
(1 − �j) (�0 − �l)

(1 − �0) (�j − �l)
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The remainder proceeds in the same way as in the �rst two cases, any experiment realization

that yields a belief in the interval [�l , �j] leads to an equilibrium payo� bounded below by

the optimal equilibrium payo� at belief �0, and any experiment realization that yields a belief

outside that interval leads to an equilibrium payo� bounded below by the pooling payo�.

Ultimately, the null-optimal experiment, �, is less Blackwell informative than � (which

corresponds to an information structure that serves as a lower-bound for the receiver’s payo�

from learning), so learning must always be bene�cial.

We have gone through each case, and the result is shown. ■

A.2 Lemma 3.3 Proof

Proof. Let each action be strictly optimal in at least one state (or else the result is trivial). We

may partition the set of types Θ = Θ1 ⊔Θ2, where Θ1 is the set of types for whom the receiver

strictly prefers to choose action a1, and Θ2 is the set of types for whom the receiver strictly

prefers to choose action a2. It is without loss of generality to suppose that there are no types

for whom the receiver is indi�erent between her two actions.

Equivalently, vi ∶= uR(a1, �i) > uR(a2, �i) =∶ wi for all �i ∈ Θ1, and wi > vi for all �i ∈ Θ2.

Denote

Θ1 = {�1,… , �t}

Θ2 = {�t+1,… , �n}

Consider an equilibrium in which at least one type, �k , mixes. Without loss of generality,

let �k ∈ Θ1, i.e. he is a type for whom the receiver would strictly prefer to choose action a1.

Next, suppose that �k mixes over a subset of the set of messages, Mk , where

Mk = {m1,… , ml}

with a generic element mk ∈ Mk . Moreover, Mk is partitioned by three sets, M0

k
, M1

k
and

M
2

k
, where M0

k
is the set of messages after which the receiver is indi�erent between her two

actions, M1

k
is the set of messages after which the receiver strictly prefers a1, and M2

k
is the

set of messages after which the receiver strictly prefers a2. By assumption, neither M1

k
nor
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M
2

k
is the empty set, in which case we can pick two messages, m1 ∈ M

1

k
and m2 ∈ M

2

k
. The

receiver’s expected payo� at this equilibrium can be written as

V (�) = � (�k) (�k (m1) vk + �k (m2)wk) + 

where  is the remainder of the receiver’s payo� that–crucially for the sake of this proof–

does not depend on �k (m1) or �k (m2). However, the receiver’s payo� strictly increases if

instead �k modi�ed his mixed strategy so that �̂k (m1) = �k (m1) + �k (m2) and �̂k (m2) = 0

since vk > wk (recall that we stipulated that �k ∈ Θ1). Moreover, it is easy to see that this

is also an equilibrium: �k is indi�erent over any pure strategy in the support of his mixed

strategy; and following messages m1 and m2 under the new mixture, the receiver still �nds

it optimal to choose a1 and a2, respectively (and the receiver’s beliefs and payo�s following

any other message are unchanged).

Since m1 ∈ M
1

k
and m2 ∈ M

2

k
were two arbitrary messages, and �k was an arbitrary type,

the result follows. ■

A.3 Lemma 3.4 Proof

Proof. Again, let each action be uniquely optimal in at least one state, and let two messages

be used in the receiver optimal equilibrium at belief �0 (if only one message is used, the

receiver obtains the pooling payo� at �0, and hence any initial experiment must be to her

pro�t).

In addition, we may, without loss of generality, impose that at �0 there is an equilibrium

such that, following each message, m1 and m2, di�erent actions, a1 and a2, respectively, are

strictly optimal. Otherwise, this would just yield the pooling payo� and the result would be

trivial. By Lemma 3.3, this imposition ensures that each type is choosing a pure strategy.

Next, partition setΘ1 into two sets,Ge

1
andGd

1
, which correspond to the types who choose

m1 andm2, respectively. Likewise, partition setΘ2 into two sets Ge

2
and Gd

2
which correspond

to the types who choose m2 and m1, respectively.

These sets are, explicitly,
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G
e

1
∶= {�1,… , �m} , G

d

1
∶= {�m+1,… , �t}

G
e

2
∶= {�t+1,… , �r} , G

d

2
∶= {�r+1,… , �n}

Moreover, note that it is possible that some are the empty set; although of course if Gd

2
is

nonempty then Ge

1
cannot be empty, and similarly for Gd

1
and Ge

2
.

Next, since we have imposed that an equilibrium of the above form exists at �0, such an

equilibrium must exist at any belief � such that the following condition holds:

Condition A.2.

m

∑

i=1

� (�i) vi +

n

∑

j=r+1

� (�j) vj ≥

m

∑

i=1

� (�i)wi +

n

∑

j=r+1

� (�j)wj (A1)

and
r

∑

i=t+1

� (�i)wi +

t

∑

j=m+1

� (�j)wj ≥

r

∑

i=t+1

� (�i) vi +

t

∑

j=m+1

� (�j) vj (A2)

Accordingly, at �0, the receiver’s payo� is

V
T
(�0) =

m

∑

i=1

�0 (�i) vi +

n

∑

j=r+1

�0 (�j) vj +

r

∑

i=t+1

�0 (�i)wi +

t

∑

j=m+1

�0 (�j)wj (A3)

Without loss of generality, we may suppose that there are just three signal realizations:

one, A, after which Condition A.2 holds; one, B, after which there is a pooling equilibrium

for which a1 is optimal; and one, C , after which there is a pooling equilibrium for which a2

is optimal. We may make this assumption since the receiver is only aided by multiple signal

realizations in each pooling region. Then the receiver’s expected payo� from the initial signal

is bounded below by

p

[

m

∑

i=1

�A (�i) vi +

n

∑

j=r+1

�A (�j) vj +

r

∑

i=t+1

�A (�i)wi +

t

∑

j=m+1

�A (�j)wj

]

+q

[

m

∑

i=1

�B (�i) vi +

n

∑

j=r+1

�B (�j) vj +

r

∑

i=t+1

�B (�i) vi +

t

∑

j=m+1

�B (�j) vj
]

+ s

[

m

∑

i=1

�C (�i)wi +

n

∑

j=r+1

�C (�j)wj +

r

∑

i=t+1

�C (�i)wi +

t

∑

j=m+1

�C (�j)wj

]

(A4)
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where

p ∶= Pr(A), q ∶= Pr(B), s ∶= Pr(C), p + q + s = 1,

and p�A(�i) + q�B(�i) + r�C(�i) = �0(�i) for all i. Expression A4 can be simpli�ed to

V
T
(�0) + qΥ + sΓ

where

Υ ∶=

[

r

∑

i=t+1

�B (�i) (vi − wi) +

t

∑

j=m+1

�B (�j) (vj − wj)
]

(A5)

and

Γ ∶=

[

m

∑

i=1

�C (�i) (wi − vi) +

n

∑

j=r+1

�C (�j) (wj − vj)
]

(A6)

Since a1 is optimal in the pooling equilibrium following message B and a2 is optimal in the

pooling equilibrium following C we must have
m

∑

i=1

�B (�i) (vi − wi) +

n

∑

j=r+1

�B (�j) (vj − wj) ≥

r

∑

i=t+1

�B (�i) (wi − vi) +

t

∑

j=m+1

�B (�j) (wj − vj)

(A7)

and

m

∑

i=1

�C (�i) (vi − wi) +

n

∑

j=r+1

�C (�j) (vj − wj) ≤

r

∑

i=t+1

�C (�i) (wi − vi) +

t

∑

j=m+1

�C (�j) (wj − vj)

(A8)

Moreover, since Condition A.2 does not hold for belief �B, we must have either
m

∑

i=1

�B (�i) vi +

n

∑

j=r+1

�B (�j) vj <

m

∑

i=1

�B (�i)wi +

n

∑

j=r+1

�B (�j)wj (A9)

and/or
r

∑

i=t+1

�B (�i)wi +

t

∑

j=m+1

�B (�j)wj <

r

∑

i=t+1

�B (�i) vi +

t

∑

j=m+1

�B (�j) vj (A10)

Suppose that Inequality A9 holds. then we may substitute it into Inequality A7 and cancel:
r

∑

i=t+1

�B (�i) (vi − wi) +

t

∑

j=m+1

�B (�j) (vj − wj) ≥ 0
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Hence, Υ is positive. On the other hand, if Inequality A10 holds then we may substitute it

directly into Υ, which again must be positive.

A symmetric procedure works at belief �C to establish that Γ also must be positive. Since

Γ and Υ are both positive, Expression A4, the receiver’s payo� from learning must be at least

weakly greater than V
T
(�0). We have exhausted every case, and so conclude that any initial

experiment bene�ts the receiver. ■

A.4 Lemma 3.6 Proof

Proof. Denote the set of (three) states by Θ = {�L, �M , �H}. For convenience we use the

shorthand vi ∶= uR (a1, �i) and wi
∶= uR (a2, �i), for all i = L,M, H . Without loss of generality,

we may assume that action a1 is strictly optimal in states �L and �H , and action a2 is strictly

optimal in state �M : vL > wL, vH > wH , and wM > vM .

Next, observe that we can picture any belief in the (x, y)-coordinate plane, where the

x-axis corresponds to �M , and the y-axis corresponds to �H . De�ne region R1 as the region

in which a1 is optimal and R2 as the region in which a2 is optimal. Each region, R1 and R2, is

compact and convex, and the two regions share a boundary that is a line segment. De�ne R

to be the simplex of beliefs, R = R1 ∪ R2.

From Lemma 3.3, for some prior �0, there are just three possible arrangements of the

posteriors that are induced by the null-optimal experiment:

Case 1: All posteriors lie in one region.

Case 2: All posteriors that follow messages chosen by �M fall in region R2, where there is

at least one posterior that does not lie on the boundary R1 ∩ R2; and all posteriors that follow

messages chosen by �L and �H fall in region R1, where there is at least one posterior that does

not lie on the boundary R1 ∩ R2.

Case 3: All posteriors that follow messages chosen by �H (�L) fall in region R1, where

there is at least one posterior that does not lie on the boundary R1 ∩ R2; and all posteriors

that follow messages chosen by �L (�H ) and �M fall in region R2, where there is at least one

posterior that does not lie on the boundary R1 ∩ R2. By symmetry, we need focus only on the
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case where the posteriors that follow �H ’s messages fall in region R1.

Note that throughout this proof, by Lemma 3.3, each belief that is not on the line segment

R1 ∩ R2 must lie on the boundary of the triangle (2-simplex) of beliefs.

In the �rst case, the receiver clearly bene�ts from any initial experiment. The payo�

under the prior is the pooling payo�, and so ex ante learning can only aid the receiver. The

second case is trickier: there are two sub-cases that we need to examine:

Case 2a: The mixed strategy of each type has support on at least one message that

induces a belief that is not on the boundary R1 ∩ R2.

Case 2b: There is one type, say �L, that mixes only over messages that induce beliefs that

are on the boundary R1 ∩ R2.

In case 2a, it is easy to see that there must also be a receiver optimal equilibrium in which

�H and �L each choose one message (possibly the same message) that induces a belief in R ⧵R2,

and �M chooses one message that induces a belief in R ⧵ R1. This is clearly an equilibrium,

since each type already has support of its mixed strategy on its respective message; is optimal

for the receiver, since this yields the receiver the maximum possible payo� (the separating

payo�); and, moreover, does not depend on the prior. Hence, any initial experiment bene�ts

the receiver.

In case 2b, there must exist a receiver-optimal equilibrium in which �H sends just one

message, mH , which induces a belief in R ⧵ R2; �L sends just one message, mL, which induces

a belief on the boundary R1 ∩R2; and �M mixes between mL and mM , the latter which induces

a belief in R ⧵ R1. We will return to this distribution of posteriors shortly.

Case 3 also must be divided into two cases:

Case 3a: �L mixes only over messages that induce beliefs that are on the boundary R1∩R2.

Case 3b: �L mixes over at least one message that induces a belief in R ⧵ R1.

Case 3a is identical to case 2b. In case 3b, there must exist a receiver-optimal equilibrium

in which �H sends just one message, mH , that induces a belief in R ⧵ R2; and �L and �M pool

on one message mp , that induces a belief in R ⧵ R1. Here, only two messages are used and so

by Lemma 3.4 any initial experiment bene�ts the receiver.

37



Consequently, it remains to consider the scenario that case 2b reduces to: for prior �0
just three messages are used as follows: �H separates and chooses message mH , �L chooses

messagemL and �M mixes between two messages,mL andmM , in such a way that the receiver

is indi�erent over her actions following mL (note, that there is an equivalent scenario that is

obtained by interchanging �H and �L).

The prior �0 must be such that

�
0

L
≤

wM − vM

vL − wL

�
0

M

and the receiver’s payo� is

v ∶= V (�0) = �
0

H
vH + �

0

M
wM + �

0

L
wL

Call this equilibrium S
†. It is clear that without loss of generality we may focus on an initial

experiment that is binary, and which yields just two beliefs �1 and �2, where �1 is a belief

such S† is feasible, and �2 is a belief such that S† is infeasible. To see that this is without loss

of generality, note that if there are multiple initial experiment realizations after which S
† is

feasible, the receiver achieves at least the payo� as in the case when there is just one such

initial experiment realization. Likewise, if there are multiple initial experiment realizations

after which S
† is infeasible, since we need only assume the pooling payo� in this case, it is

again clear that the receiver achieves at least the payo� as in the case where there is just one

such initial experiment realization.

Thus, the initial experiment, � , yields �1 = (�
1

L
, �

1

M
, �

1

H) with probability p and �2 =

(�
2

L
, �

2

M
, �

2

H) with probability (1 − p), where p�1 + (1 − p)�2 = �0. For belief �2, the receiver’s

payo� is bounded below by the pooling equilibrium payo�, and so we assume that that is

indeed the payo�. Note that since �2 is not a belief for which S† is feasible, we must have

�
2

L
>

wM − vM

vL − wL

�
2

M
(A11)

Claim A.3. For belief �2, action a1 is optimal.

Proof. Suppose for the sake of contradiction that a1 is not optimal. That is

�
2

L
wL + �

2

M
wM + �

2

H
wH > �

2

L
vL + �

2

M
vM + �

2

H
vH
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But then

�
2

L
wL + �

2

M
wM + �

2

H
wH > �

2

L
wL + �

2

M
wM + �

2

H
vH

�
2

H
wH > �

2

H
vH

where the second inequality follows from Inequality A11. This is a contradiction. ■

Thus, a1 is optimal and so the receiver’s expected payo� is

V = p [�
1

H
vH + �

1

M
wM + �

1

L
wL] + (1 − p) [�

2

L
vL + �

2

M
vM + �

2

H
vH]

which reduces to

V = v + (1 − p) [�
2

L
(vL − wL) − �

2

M
(wM − vM )]

which is greater than v by Inequality A11.

■

A.5 Lemma 4.2 Proof and Payo� Function Derivation

Proof. We derive the receiver’s payo� as a function of the belief � through a pair of claims.

First,

Claim A.4. For any belief � > 13/36, there exists no equilibrium in which a message is played

that induces a belief such that action a1 is strictly optimal.

Proof. We can exhaustively proceed through each message:

1. Suppose a1 is strictly optimal following m1. Then, �4 must have support of his mixed

strategy on m1. That gives him a payo� of −1, so he can deviate pro�tably to m2.

2. Suppose a1 is strictly optimal following m2. Both �3 and �4 must have support of their

mixed strategies on m2. Moreover, so much of their support must be on m2 that the

receiver must choose a2 following m1 (which will always be chosen by �1). Hence, �3
can deviate pro�tably to m1.
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3. Suppose a1 is strictly optimal following m3. Consequently �3 must have some support

of his mixed strategy on m3 (since �4 will never choose m3). Moreover, �3 cannot be

choosing a pure strategy since otherwise he would have a pro�table deviation to m2.

Hence, �3 must be mixing over m3 and m2 (since 3 is strictly larger than either of �3’s

payo�s for m1). The receiver must also mix following m2, so as to leave �3 willing to

mix. In particular, the receiver must choose a2 with probability 2/3 following m2 and

a1 with probability 1/3. But note that �4 must also have support on m2, which message

would thus yield it a payo� of 2/3, which is less than 5/4, the payo� he would get from

deviating pro�tably to m1.

■

As a result V T
=

1

3
+ � for all � > 13/36. Second,

ClaimA.5. For any belief � ≤ 13/36, the receiver optimal equilibrium begets a payo� of 37/24−

2�.

Proof. First, an equilibrium that begets such a payo� exists. Type �1 choosesm1, types �2 and

�4 choose m2, and type �3 chooses m3. Upon observing m1, the receiver chooses a2, and upon

observing either m2 or m3 the receiver chooses a1.

It is immediately evident that neither �1 nor �2 have pro�table deviations, since they

are choosing strictly dominant strategies. On path, �4 obtains 2, whereas his payo� from

deviating would be less than 2. Finally, �3 obtains 3 following m3 and less than 3 following

any other message. The receiver’s equilibrium payo� is

1

3

+

1

8

+ 2
(

13

24

− �
)
=

37

24

− 2�

Second, it is easy to verify that this equilibrium is optimal for the receiver: �4 is unwilling

to choose messagem3 and �1 and �2 always choosem1 andm2, respectively. Thus, the receiver

will always get her decision “wrong" with respect to some mixture of �1, �2 or �4. For � ≤ 1/3,

she prefers to get her decision wrong with respect to �2, so our proposed equilibrium is

obviously optimal. For � ∈ (1/3, 13/36], she prefers to get her decision wrong with respect to
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�1 but then �4 would always have a pro�table deviation to m2. Thus, she gets her decision

wrong with respect to �2.

Alternatively, as noted in Whitmeyer (2019) [29], this is the receiver-optimal payo� under

any information structure (or any degree of transparency). Therefore, since the receiver can

obtain this payo� with full transparency, the corresponding equilibrium must be optimal. ■

■

A.6 Lemma 4.3 Proof

Proof. It is easy to see that in this game there are no separating equilibrium–type �L can

deviate pro�tably by mimicking either of the other types. For each of the three possible

priors (�0, �1, and �2) any pooling equilibrium results in the receiver choosing l. There exist

pooling equilibria for each prior, and any o�-path belief sustains such equilibria, since the

senders receive their maximal payo� on path.

Compiling the remaining equilibria appears daunting (or at least unpleasant), but we can

thankfully bypass this, since we are interested in the receiver optimal equilibria. Instead

of �nding each equilibrium, we take a belief-based approach and construct and solve the

appropriate maximization problem for the receiver.

Observe that the receiver has at most three posterior distributions at equilibrium, which

corresponds to the case in which all three messages are used on path, which messages beget

di�erent posterior distributions. Note that any distribution or belief in the context of this

example corresponds to a point in Figure 6. It is a standard result that beliefs are amartingale–

hence, an equilibrium pair of posterior beliefs is feasible only if there exists a line segment

between the two beliefs that intersects the prior (for it to be an equilibrium pair of beliefs,

each posterior must be generated by an equilibrium vector of strategies). Likewise, a triplet

of posteriors is feasible only if the prior lies in the convex hull of the three points.

From this, we see immediately that for each (prior) belief, �0, �1, and �2, it is impossible for

none of the equilibrium posterior beliefs to lie in l. Even more, at least one of the posterior

beliefs must lie in the interior of l. Hence, there are four cases: i. All of the posteriors lie in l,

ii. Some of the posteriors lie in s and some in l, iii. Some of the posteriors lie in x and some
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in l, or iv. There is one posterior in each of l, s and x .

However, cases iii. and iv. are impossible: each type strictly prefers l or s to x and

thus some type must have a pro�table deviation to a message that induces a posterior in l.

Moreover, if all of the posteriors lie in l, then this yields the same payo� to the receiver as

the case in which each type pools and so we may ignore case i.

Consequently, it remains to consider case ii. In addition, note that without loss we may

focus on the situation in which there are just two posteriors since if the optimum consisted

of three posteriors, two of them must lie in the same region, and we could just take their

average, which would also lie in the same region and yield the receiver the same (total)

payo�.

As a result, for each (prior) belief Q, Q ∈ {�0, �1, �2}, the receiver solves

max
�,�1,�2

{�V (�1) + (1 − �)V (�2)}

subject to

��1 + (1 − �)�2 = Q

and �1 ∈ B, �2 ∈ A, and � ∈ [0, 1]. Substituting in the payo�s, and with the aid of Figure 6,

we have

max

�,�
1

H
,�
1

M
,�
2

H
,�
2

M

{

�
(
�
1

H
+

13

24

(1 − �
1

H
)
)
+ (1 − �)(2�

2

H
+ �

2

M
)

}

subject to

��
1

H
+ (1 − �)�

2

H
= �

0

H
, ��

1

M
+ (1 − �)�

2

M
= �

0

M
,

1 ≥ � ≥ 0, �
1

H
≥ 0,

13 − 37�
1

H

24

≥ �
1

M
≥

11

24

(1 − �
1

H
),

�
2

M
≥ 0, �

2

H
+ �

2

H
≤ 1

For belief �0, �∗ = 6/13, and the optimal pair of equilibrium posteriors is

(

13

24

,

11

24

, 0
)
, and

(
0,

1

14

,

13

14
)

(A12)

which yields the receiver a payo� of 67/52. This corresponds to an equilibrium in which �H

and �L choose di�erent messages, say g and b, respectively; and �M mixes between those

messages (g and b).
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For belief �1, �∗1 = 2/13, and the optimal pair of equilibrium posteriors is

(

13

24

,

11

24

, 0
)
, and

(
0,

7

33

,

26

33
)

(A12)

which yields the receiver a payo� of 83/52. This corresponds to the same type of equilibrium

as for �0 (the receiver can distinguish between �H and �L).

For belief �2, �∗2 = 6/11, and the optimal pair of equilibrium posteriors is

(

13

24

,

11

24

, 0
)
, and

(

4

15

, 0,

11

15
)

(A13)

which yields the receiver a payo� of 127/132. This corresponds to an equilibrium in which

�H and �M choose di�erent messages, say g and m, respectively; and �L mixes between those

messages (g and m).

The pooling equilibrium payo�s for each prior are 5/4, 19/12, and 11/12, for �0, �1, and �2,

respectively. Hence, the pooling equilibrium is not optimal for any of the priors, and so the

equilibria that correspond to the posterior pairs given in Expressions A12, A12, and A13 are

optimal for their respective priors.

It remains to verify
67

52

>

2195

1716

=

1

2

⋅

83

52

+

1

2

⋅

127

132

and thus the receiver’s optimal equilibrium payo� is not convex in the prior. Note that this

game is a cheap talk game with transparent motives–even these restrictions are not enough

to guarantee convexity. ■
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