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If Hercules and Lychas play at dice
Which is the better man, the greater throw
May turn by fortune from the weaker hand.

William Shakespeare,
The Merchant of Venice

Sets of nontransitive dice are fascinating mathematical objects that have attracted the
curiosity of many for nearly fifty years. They first came into the limelight in one of
Martin Gardner’s column [8] and are one of a larger class of nontransitivity “para-
doxes” (see [2, 16]), which also include the well-known Condorcet voting paradox, as
described in [7].

The past few years have seen a surge in interest in the topic, including [1, 4, 15].
The underlying ideas have not been limited merely to dice; one notable work is [10],
which instead reinterprets the scenario through throws of unfair coins. Nontransitive
dice have even been the subject of investigation by the well-known polymath project
(see [12]), and indeed we borrow some terminology from that paper.

When one speaks of dice, one usually speaks also of a game, and when a game is
the topic at hand, a natural question is how it should be played. Along those lines,
several papers have investigated how nontransitive dice should be thrown in a strategic
interaction of two or more players. Rump [14] was the first one to do so: he explores
a two-player game in which each player may choose one of the four six-sided Efron
dice and finds the set of equilibria, before extending the analysis to cover the situation
in which each player chooses two such dice.

Here, we investigate a broader problem: we consider a two-player, simultaneous-
move game in which each player selects a general n-sided die and throws it. The player
with the highest face showing wins a reward, normalized to 1, and each player receives
1/2 in the event of a tie. For our game, we use the Nash equilibrium solution concept.
Note that this game is a constant-sum game; therefore it is equivalent to a zero-sum
game for which a Nash equilibrium is a saddle point. We show that, for n > 3, there
is a single, unique, pure-strategy Nash equilibrium in which both players play the
standard n-sided die where each possible value, 1, 2, . . . , n, occurs with probability
1/n. There may be additional mixed strategy equilibria; however, in this analysis we
focus exclusively on pure strategy equilibria and henceforth, by Nash equilibrium or
equilibrium, we mean only those in pure strategies.

Moreover, our proof of uniqueness is constructive and contains an algorithm that,
for any nonstandard die, generates a die that beats it. We introduce the idea of a one-
step die: a die that is the result of a simple modification of the standard die in which
one dot is moved from one face to another. Intuitively, such a die is merely “one-step”
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away from the standard die. We show that for any nonstandard die, there is always at
least one one-step die that beats it.

Two additional papers bear mention. The closest paper to this one, [6], considers the
same problem, where for some fixed integer n, two players each choose a die and throw
against each other. The authors show that the standard die ties every other die, and that
every nonstandard die loses to some other die. Another paper, [5], also explores dice
games though in a slightly more general setting, and the existence and uniqueness of
an equilibrium in which both players each throw the standard die follows from their
Propositions 6 and 8.

Our paper differs from [5,6] in the following key ways. We provide different proofs
of the existence and uniqueness of the Nash equilibrium in the game, and we are able
to do so exclusively using elementary mathematics. Additionally, our proof is con-
structive and we formulate a simple algorithm that allows us, for any nonstandard die,
to generate a die that beats it. Moreover, our last result—that for any nonstandard die,
there is a one-step die that beats it—is also novel.

Finally, dice games can be placed in a more general context, as a member of the
family of Colonel Blotto games. First developed by E. Borel in 1921 (see [3]), a bur-
geoning literature has resulted, due to the game’s general applications in economics,
operations research, political science, and other areas. Some recent papers include
[9, 13]. In another paper [11], we explore an n-player continuous version of this game
played on the interval [0, 1], which is then extended in [17] to a dynamic setting. For
two players, the unique equilibrium is the continuous analog of the unique equilibrium
here, the uniform distribution.

The basic game

Fix a positive integer n and define an n-tuple D = (d1, d2, . . . , dn) with 1 ≤ d1 ≤
d2 ≤ · · · ≤ dn ≤ n such that

∑
di = n(n + 1)/2. We then define a general n-sided die

(henceforth just a “die”) as a random variable, D, that takes values in the finite set{
1, 2, . . . , n

}
, provided the distribution satisfies the following conditions:

1. For each i = 1, 2, . . . , n, the probability that a certain value occurs, P[D = i] = di ,
is a multiple of 1/n.

2. The expectation of the random variable is E[D] =
n∑

i=1

i · di = n + 1

2
.

Denote the set of all n-sided dice by Dn. As mentioned above, the standard n-sided die
S is the die where each possible value occurs with probability 1/n.

Example 1. Five 4-sided dice appear in the set D4:

D4 = {
[1, 1, 4, 4], [2, 2, 2, 4], [1, 3, 3, 3], [2, 2, 3, 3], S = [1, 2, 3, 4]

}
.

The game Two players, Amy and Bob, play the following one shot game for fixed
n. Amy and Bob each independently select and roll any n-sided die, A, B ∈ Dn. The
payoff to a player is the expected gain, where the reward is 1 for throwing the higher
number, 1/2 for a tie, and 0 for a lower number. Amy’s expected payoff is the prob-
ability that the realization of her throw is higher than the realization of Bob’s throw
(with ties settled by a fair coin flip), and Bob’s payoff is Amy’s mirror.

A strategy for Amy (and analogously for Bob) is simply a choice of die A ∈ Dn.
For any pair of strategies, (A, B), Amy’s expected payoff and Bob’s expected payoff,
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are, respectively,

UAmy(A, B) = Pr(A > B) + (1/2) Pr(A = B) and

UBob(A, B) = Pr(B > A) + (1/2) Pr(A = B),

where UAmy(A, B) + UBob(A, B) = 1 and UAmy(B, A) = UBob(A, B).

Example 2. Suppose Amy and Bob choose dice A = [1, 1, 4, 4] and B = [2, 2, 2, 4]
from Example 1, respectively. Then UAmy(A, B) = 7/16 and UBob(A, B) = 9/16.

The main result of this paper is the following theorem.

Theorem. For any n, the unique Nash equilibrium of the two-player game is where
both players play the standard die S.

We prove this theorem through two propositions by first showing that the strategy
pair (S, S) is a Nash equilibrium, and then, in the case where n ≥ 4, by proving that
(S, S) is the unique equilibrium. Before we proceed, we remind the reader of the defi-
nition of a Nash equilibrium.

Definition. A pair of strategies (A, B) is a (pure strategy) Nash equilibrium if neither
player, holding his or her opponent’s strategy fixed, has a profitable deviation to any
other strategy. Formally, (A, B) is a pure strategy Nash equilibrium if UAmy(A, B) ≥
UAmy(A

′, B) for all A′ ∈ Dn, and UBob(A, B) ≥ UBob(A, B ′) for all B ′ ∈ Dn.

Now, our first proposition.

Proposition 1. The strategy pair (S, S) is a Nash equilibrium.

Proof. We begin by showing that for either i ∈ {Amy, Bob} and for all D ∈ Dn,
Ui(S, D) = Ui(D, S) = 1/2.

Note that it suffices to prove that UAmy(D, S) = 1/2, since that clearly implies
UBob(S, D) = 1/2. Suppose that Bob chooses the standard die S and that Amy chooses
an arbitrary die D. If the realization of D is di (i.e., when D is rolled and “lands”
showing face di), then with probability (di − 1)/n, D beats the standard die, and with
probability 1/n, D ties the standard die. Hence,

UAmy(D, S) =
n∑

i=1

(
1

n

)(
di − 1

n
+ 1

n
· 1

2

)
=

(
1

n

)(
E[D

] − 1

2

)
= 1

2
.

Since (S, S) gives Amy a payoff of 1/2, she cannot profit by deviating from S. �

It remains to show uniqueness, which we accomplish in the following proposition.
For any two dice A, B ∈ Dn, we say that A beats B if the number of pairs (ai, bj ) with
ai > bj exceeds the number of pairs with ai < bj .

Proposition 2. The Nash equilibrium (S, S) is unique for n ≥ 4.

Proof. Clearly, for any strategy pair, player i has a profitable deviation if and only if
there is a die that beats her opponents die. Our proof is constructive and we show that
for any die B �= S, we can construct a die, G, that beats it.

To that end, let B = [b1, b2, . . . , bn] and recall that S = [1, 2, . . . , n]. For
k = 1, 2, . . . , n, define γk by γk = |{bi |bi = k

}|. By construction of the dice,

n∑
k=1

γk = n and
n∑

k=1

kγk = n(n + 1)

2
.
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Next, for k = 1, 2, . . . , n − 1, define ξk as ξk = γk + γk+1. To construct a die G that
beats B, we need simply find a pair (ξi, ξj ) with ξi > ξj (and so clearly j �= i) and
i �= j + 1. To see this, we take a look at what happens when we match the standard
die with a die D represented by (γ1, γ2, . . . , γn). Face i of the standard die defeats
γ1 + · · · + γi−1 faces of D and loses to γi+1 + · · · + γn faces of D.

Observe what happens when we move a dot from face j + 1 to face i on the standard
die: the number of wins changes by γi − γj and the number of losses changes by
γj+1 − γi+1. This new die is a one-step die, and for this die to dominate D, we need
γi − γj > γj+1 − γi+1; equivalently, γi + γi+1 > γj + γj+1. Before we return to the
proof, let’s consider an example, and then we prove a necessary lemma.

Example 3. Suppose player A chooses die X from our previous examples, X =
[1, 1, 4, 4]. We have γ1 = 2, γ2 = γ3 = 0, and γ4 = 2, and so ξ1 = 2, ξ2 = 0, and
ξ3 = 2. Evidently, ξ1 > ξ2 and 1 = i �= j + 1 = 2 + 1 = 3. Hence, adjusting the stan-
dard die S, we can add 1 to s1 and subtract 1 from s3 to yield the die Y = [2, 2, 2, 4],
which is a one-step die that beats X. Indeed, should player B choose Y she would
achieve a payoff of 9/16 > 1/2.

If ξa �= ξb for some a, b, then there must be some i, j with ξi > ξj . Thus, we
establish the following lemma:

Lemma. If n ≥ 4, then for any nonstandard n-sided die there exists a pair a, b ∈{
1, 2, . . . , n

}
, for which ξa �= ξb.

Proof. The equality ξa = ξb holds for all a, b ∈ {
1, 2, . . . , n

}
if and only if

γ1 + γ2 = γ2 + γ3 = γ3 + γ4 = · · · = γn−1 + γn

which holds if and only if

γ1 = γ3 = · · · = γk for all odd integers k ∈ {
1, 2, . . . , n

}
and

γ2 = γ4 = · · · = γj for all even integers j ∈ {
1, 2, . . . , n

}
.

(1)

We also have the following two relationships:

n∑
k odd

γk +
n∑

j even

γj = n (2)

and
n∑

k odd

kγk +
n∑

j even

jγj = n(n + 1)

2
. (3)

Note that any nonstandard die must have some γi = 0. Then either γi = 0 for all odd
i or γi = 0 for all even i.

Suppose n is odd and that γ1 = 0. From equation (2) we have (n − 1)γ2 = 2n,
which does not have a solution in integers n, γ2 for n > 3. Next, suppose n is odd
and that γ2 = 0. From equation (2) we have (n + 1)γ1 = 2n, which does not have a
solution in integers n, γ1 for n > 1. Thus, we conclude that n cannot be odd.

Suppose n is even and that γ1 = 0. From equations (1) and (2) we must have γ2 = 2,
and from equations (1) and (3) we get that n + 2 = 2(n + 1), which is obviously a
contradiction. Finally, suppose n is even and that γ2 = 0. From equations (1) and (2)
we must have γ1 = 2, and from equations (1) and (3) we must have that 2(n + 1) =
n + 1, which is also a contradiction. Thus, we have proved the lemma. �
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To wrap up the proof of Proposition 2 we need to verify that we cannot have the
situation in which the only pair ξi, ξj that satisfies ξi > ξj occurs when i = j + 1. To
that end, suppose ξi > ξj for i = j + 1. First, let j �= 1. Then, if ξj−1 ≤ ξj , relabel
j − 1 as j ′, which yields ξi > ξj ′ for i �= j ′ + 1. On the other hand, if ξj−1 > ξj ,
relabel j − 1 as i ′, implying ξi′ > ξj for i ′ �= j + 1. Next, let j = 1. If ξi+1 ≥ ξi ,
relabel i + 1 as i ′, which yields ξi′ > ξj for i ′ �= j + 1. If, instead, ξi+1 < ξi , relabel
i + 1 as j ′, and thus we have ξi > ξj ′ for i �= j ′ + 1. �

We may also write the following corollary, which we have proved along the way.

Corollary. Let n ≥ 4. Then, for any die B �= S, there exists a one-step die G that
beats B.

Note that given some die B �= S, the algorithm developed in our proof yields every
winning one-step die (i.e., a one-step die that beats B). Moreover, it is easy to see
how by “flipping” the algorithm we could also obtain the set of losing one-step dice.
Finally, the algorithm also enables us to find the “best” (and “worst”) one-step dice to
play versus B: the die (or dice) that have the greatest (or least) chance of beating B.

This last result is somewhat surprising. One natural notion of “closeness” of dice is
that two dice D and D′ are close if the dice are one step away from each other. That
is, if we could move a dot from a particular face on dice D to another face and thereby
obtain die D′ (and vice-versa). Hence, the corollary can be interpreted as saying that
for any nonstandard die, there is a die close to the standard die that beats it.
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Prime Time
Try all the tactics but you’ll always find the gap of one,

Whenever you increase the gap, Our appearance goes to none.
We are very basic but you know little about us

Do you really think you can explore the empire that belongs to us?
People out there know our values and worth,

Like Ramanujan, Mersenne, Fermat and Aryabhata.
Weakness in calculation had supported Fermat falsification,

The invention of contraption produces Prime size competition.
We are unbreakable because of our indivisible quality.

It’s promising you, That’s why your security is our guarantee.
How you count our existence between two numbers each?
We can typify any number if some of us planned to stitch.

Our counting has been building the theory of numbers,
Thus Kronecker told number theorists are like lotus eaters.

Try all the tactics but you’ll always find the gap of one,
Whenever you increase the gap, Our appearance goes to none.

—Submitted by Shashi Kant Pandey
University of Delhi, India
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